Theoretical and Applied Genetics

, Volume 116, Issue 5, pp 657–669 | Cite as

Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces

  • Andrea Mazzucato
  • Roberto Papa
  • Elena Bitocchi
  • Pietro Mosconi
  • Laura Nanni
  • Valeria Negri
  • Maurizio Enea Picarella
  • Francesca Siligato
  • Gian Piero Soressi
  • Barbara Tiranti
  • Fabio Veronesi
Original Paper

Abstract

The study of phenotypic and genetic diversity in landrace collections is important for germplasm conservation. In addition, the characterisation of very diversified materials with molecular markers offers a unique opportunity to define significant marker-trait associations of biological and agronomic interest. Here, 50 tomato landraces (mainly collected in central Italy), nine vintage and modern cultivars, and two wild outgroups were grown at two locations in central Italy and characterised for 15 morpho-physiological traits and 29 simple sequence repeat (SSR) loci. The markers were selected to include a group of loci in regions harbouring reported quantitative trait loci (QTLs) that affect fruit size and/or shape (Q-SSRs) and a group of markers that have not been mapped or shown to have a priori known linkage (NQ-SSRs). As revealed by univariate and multivariate analyses of morphological data, the landraces grouped according to vegetative and reproductive traits, with emphasis on fruit size, shape and final destination of the product. Compared to the low molecular polymorphism reported in tomato modern cultivars, our data reveal a high level of molecular diversity in landraces. Such diversity has allowed the inference of the existence of a genetic structure that was factored into the association analysis. As the proportion of significant associations is higher between the Q-SSR subset of markers and the subset of traits related to fruit size and shape than for all of the other combinations, we conclude that this approach is valid for establishing true-positive marker-trait relationships in tomato.

Supplementary material

122_2007_699_MOESM1_ESM.xls (80 kb)
(XLS 80 kb)
122_2007_699_MOESM2_ESM.xls (72 kb)
(XLS 71 kb)
122_2007_699_MOESM3_ESM.xls (64 kb)
(XLS 63 kb)
122_2007_699_MOESM4_ESM.xls (61 kb)
(XLS 61 kb)
122_2007_699_MOESM5_ESM.doc (117 kb)
(DOC 117 kb)

References

  1. Alvarez AE, van de Wiel CCM, Smulders MJM, Vosman B (2001) Use of microsatellites to evaluate genetic diversity and species relationships in the genus Lycopersicon. Theor Appl Genet 103:1283–1292CrossRefGoogle Scholar
  2. Aranzana MJ, Kim S, Zhao K, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang C, Toomajian C, Traw B, Zheng H, Bergelson J, Dean C, Marjoram P, Nordborg M (2005) Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet 1:531–539. doi:10.1371/journal.pgen.0010060 CrossRefGoogle Scholar
  3. Archak S, Karihaloo JL, Jain A (2002) RAPD markers reveal narrowing genetic base of Indian tomato cultivars. Curr Sci 82:1139–1143Google Scholar
  4. Areshchenkova T (2000) Isolation, characterization and mapping of microsatellites from the tomato genome and their application in molecular analysis of centromeric regions. Ph.D. Dissertation, University of Sachsen-Anhalt, GermanyGoogle Scholar
  5. Areshchenkova T, Ganal MW (2002) Comparative analysis of polymorphism and chromosomal location of tomato microsatellite markers isolated from different sources. Theor Appl Genet 104:229–235PubMedCrossRefGoogle Scholar
  6. Bailey LH, Tracy WW, Kyle EJ, Watts RL (1960) Tomato. In: Bailey LH (eds) The standard cyclopedia of horticulture. The Macmillan Company, New York, pp 3353–3359Google Scholar
  7. Barrero LS, Tanksley SD (2004) Evaluating the genetic basis of multiple-locule fruit in a broad cross section of tomato cultivars. Theor Appl Genet 109:669–679PubMedCrossRefGoogle Scholar
  8. Bredemeijer G, Cooke R, Ganal M, Peeters R, Isaac P, Noordijk Y, Rendell S, Jackson J, Röder MS, Wendehake K, Dijcks M, Amelaine M, Wickaert V, Bertrand L, Vosman B (2002) Construction and testing of a microsatellite database containing more than 500 tomato varieties. Theor Appl Genet 105:1019–1026PubMedCrossRefGoogle Scholar
  9. Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177PubMedCrossRefGoogle Scholar
  10. Broun P, Tanksley SD (1996) Characterization and genetic mapping of simple repeat sequences in the tomato genome. Mol Gen Genet 250:39–49PubMedCrossRefGoogle Scholar
  11. Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemaire-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55:1671–1685PubMedCrossRefGoogle Scholar
  12. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  13. Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162PubMedGoogle Scholar
  14. Esquinas-Alcazar J, Nuez F (1995) Situacion taxonomica, domesticacion y diffusion del tomate. In: Nuez F (eds) El cultivo del tomate. Ed Mundi-Prensa, Madrid, Barcelona, Mexico, pp 13–42Google Scholar
  15. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  16. Flint-Garcia SA, Thuillet A-C, Yu J, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J 44:1054–1064PubMedCrossRefGoogle Scholar
  17. Frary A, Nesbitt TC, Frary A, Grandillo S, van der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tnaksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88PubMedCrossRefGoogle Scholar
  18. Frary A, Xu Y, Liu J, Mitchell S, Tedeschi E, Tanksley SD (2005) Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor Appl Genet 111:291–312PubMedCrossRefGoogle Scholar
  19. Fulton TM, Bucheli P, Voirol E, López J, Pétiard V, Tanksley SD (2002) Quantitative trait loci (QTL) affecting sugars, organic acids and other biochemical properties possibly contributing to flavor, identified in four advanced backcross populations of tomato. Euphytica 127:163–177CrossRefGoogle Scholar
  20. García-Gusano M, García-Martínez S, Ruiz JJ (2004) Use of SNP markers to genotype commercial hybrids and Spanish local cultivars of tomato. Tomato Genet Coop Rep 54:12–15Google Scholar
  21. García-Martínez S, Andreani L, García-Gusano M, Geuna F, Ruiz JJ (2006) Evaluation of amplified fragment length polymorphism and simple sequence repeats for tomato germplasm fingerprinting: utility for grouping closely related traditional cultivars. Genome 49:648–656PubMedCrossRefGoogle Scholar
  22. Grandillo S, Ku HM, Tanksley SD (1996) Characterization of fs8.1, a major QTL influencing fruit shape in tomato. Mol Breed 2:251–260CrossRefGoogle Scholar
  23. Grandillo S, Ku HM, Tanksley SD (1999) Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet 99:978–987CrossRefGoogle Scholar
  24. He C, Poysa V, Yu K (2003) Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theor Appl Genet 106:363–373PubMedGoogle Scholar
  25. Herrmann D, Boller B, Studer B, Widmer F, Kölliker R (2006) QTL analysis of seed yield components in red clover (Trifolium pratense L.). Theor Appl Genet 112:536–545PubMedCrossRefGoogle Scholar
  26. Huang XQ, Borner A, Röder MS, Ganal MW (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet 105:699–707PubMedCrossRefGoogle Scholar
  27. Kraakman ATW, van Eeuwijk FA, Dourleijn CJ, Stam P (2001) Fingerprinting of barley to study yield stability. In: Gallais A, Dillman C, Goldgringer I (eds) Quantitative genetics and breeding methods: the way ahead. Proceed 11th meeting of Eucarpia, section Biometrics in Plant breeding. INRA edition, Paris, pp 117–124Google Scholar
  28. Ku HM, Grandillo S, Tanksley SD (2000) fs8.1, a major QTL, sets the pattern of tomato carpel shape well before anthesis. Theor Appl Genet 101:873–878CrossRefGoogle Scholar
  29. Lehmann EL, D’Abrera HJM (1975) Nonparametrics: statistical methods based on ranks. Holden-Day series in probability and statistics. Holden-Day, San FranciscoGoogle Scholar
  30. Lippman Z, Tanksley SD (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 158:413–422PubMedGoogle Scholar
  31. Liu K, Muse S (2005) PowerMarker: new genetic data analysis software, Version 3.23. Available via DIALOG. http://www.powermarker.net. Accessed 9 Jan 2007
  32. Lynch M, Walsh B (1997) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland, pp 413Google Scholar
  33. Mazzucato A (1995) Italian germplasm of Poa pratensis L. I. Variability and mode of reproduction. J Genet Breed 49:111–118Google Scholar
  34. McIntosh MS (1983) Analysis of combined experiments. Agron J 75:153–155CrossRefGoogle Scholar
  35. Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448Google Scholar
  36. Monti L, Santangelo E, Corrado G, Rao R, Soressi GP, Scarascia Mugnozza GT (2004) Il “San Marzano”: problematiche e prospettive in relazione alla sua salvaguardia e alla necessità di interventi genetici. Agroindustria 3:161–169Google Scholar
  37. Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J Mol Evol 91:153–170CrossRefGoogle Scholar
  38. Nesbitt TC, Tanksley SD (2002) Comparative sequencing in the genus Lycopersicon: implication for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics 162:365–379PubMedGoogle Scholar
  39. Noble D (1994) Tantalizing tomatoes from the past. Am Veget Grower 42:44–47Google Scholar
  40. Noli E, Conti S, Maccaferri M, Sanguineti MC (1999) Molecular characterization of tomato cultivars. Seed Sci Technol 27:1–10Google Scholar
  41. Orloci L (1972) An algorith for cluster seeking in ecological collections. Vegetatio 27:339–345CrossRefGoogle Scholar
  42. Park YH, West MAL, St Clair DA (2004) Evaluation of AFLPs for germplasm fingerprinting and assessment of genetic diversity in cultivars of tomato (Lycopersicon esculentum L.). Genome 47:510–518PubMedCrossRefGoogle Scholar
  43. Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD, Lincoln SE, Lander ES, Tanksley SD (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species generations and environments. Genetics 127:181–197PubMedGoogle Scholar
  44. Podani J (1993) SYN-TAX-pc Version 5.0, User’s Guide. Scientia, BudapestGoogle Scholar
  45. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  46. Rick CM (1976) Tomato, Lycopersicon esculentum (Solanaceae). In: Simmonds NW (eds) Evolution of crop plants. Longman Group, London, pp 268–273Google Scholar
  47. Rick CM, Holle M (1990) Andean Lycopersicon esculentum var. cerasiforme: genetic variation and ist evolutionary significance. Econ Bot 44:69–78Google Scholar
  48. Ruiz JJ, García-Martínez S, Picó B, Gao M, Quiros CF (2005) Genetic variability and relationship of closely related Spanish traditional cultivars of tomato as detected by SRAP and SSR markers. J Am Soc Hortic Sci 130:88–94Google Scholar
  49. SAS Institute Inc. (2002) SAS guide for personal computers, 9th edn. SAS Institute, CaryGoogle Scholar
  50. Smulders MJM, Bredemeijer G, Rus-Kortekaas W, Arens P, Vosman B (1997) Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 94:264–272CrossRefGoogle Scholar
  51. Sneath PHA, Sokal RR (1973) Numerical taxonomy. WH Freeman, San FranciscoGoogle Scholar
  52. Soressi GP (1969) Il pomodoro. Ed Agricole, BolognaGoogle Scholar
  53. Stevens MA, Rick CM (1986) Genetics and breeding. In: Atherton JG, Rudich J (eds) The tomato crop. Chapman and Hall, London, pp 35–109Google Scholar
  54. Suliman-Pollatschek S, Kashkush K, Shats H, Hillel J, Lavi U (2002) Generation and mapping of AFLP, SSRs and SNPs in Lycopersicon esculentum. Cell Mol Biol Lett 7:583–597PubMedGoogle Scholar
  55. Tam SM, Mhiri C, Vogelaar A, Kerkveld M, Pearce SR, Grandbastien M-A (2005) Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor Appl Genet 110:819–831PubMedCrossRefGoogle Scholar
  56. Tanksley SD (2004) The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16:S181–S189PubMedCrossRefGoogle Scholar
  57. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289PubMedCrossRefGoogle Scholar
  58. Van de Peer Y, De Wachter R (1993) TREECON: a software package for the construction and drawing of evolutionary trees. Comput Applic Biosci 9:177–182Google Scholar
  59. Van der Knaap E, Tanksley SD (2001) Identification and characterization of a novel locus controlling early fruit development in tomato. Theor Appl Genet 103:353–358CrossRefGoogle Scholar
  60. Van der Knaap E, Lippman Z, Tanksley SD (2002) Extremely elongated tomato fruit controlled by four quantitative trait loci with epistatic interactions. Theor Appl Genet 104:241–247CrossRefGoogle Scholar
  61. Van der Knaap E, Tanksley SD (2003) The making of a bell pepper-shaped tomato fruit: identification of loci controlling fruit morphology in Yellow Stuffer tomato. Theor Appl Genet 107:139–147PubMedGoogle Scholar
  62. Wang L, Guan R, Zhangxiong L, Chang R, Qiu L (2006) Genetic diversity of chinese cultivated soybean revealed by SSR markers. Crop Sci 46:1032–1038CrossRefGoogle Scholar
  63. Williams CE, St. Clair DA (1993) Phenetic relationships and levels of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum. Genome 36:619–630CrossRefPubMedGoogle Scholar
  64. Xu Y, Beachell H, McCouch SR (2005) A marker-based approach to broadening the genetic base of rice in the USA. Crop Sci 44:1947–1959CrossRefGoogle Scholar
  65. Zhang N, Xu Y, Akash M, McCouch S, Oard JH (2005) Identification of candidate markers associated with agronomic traits in rice using discriminant analysis. Theor Appl Genet 110:721–729PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Andrea Mazzucato
    • 1
  • Roberto Papa
    • 2
  • Elena Bitocchi
    • 2
  • Pietro Mosconi
    • 1
  • Laura Nanni
    • 2
  • Valeria Negri
    • 3
  • Maurizio Enea Picarella
    • 1
  • Francesca Siligato
    • 1
  • Gian Piero Soressi
    • 1
  • Barbara Tiranti
    • 3
  • Fabio Veronesi
    • 3
  1. 1.Dipartimento di Agrobiologia e AgrochimicaUniversità degli Studi della TusciaViterboItaly
  2. 2.Dipartimento di Scienze degli AlimentiUniversità Politecnica delle MarcheAnconaItaly
  3. 3.Dipartimento di Biologia Vegetale e Biotecnologie Agro-ambientali e ZootecnicheUniversità degli Studi di PerugiaPerugiaItaly

Personalised recommendations