Theoretical and Applied Genetics

, Volume 116, Issue 5, pp 613–622 | Cite as

Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross

  • Xiaobo Xie
  • Fengxue Jin
  • Mi-Hee Song
  • Jung-Pil Suh
  • Hung-Goo Hwang
  • Yeon-Gyu Kim
  • Susan R. McCouch
  • Sang-Nag Ahn
Original Paper

Abstract

A high-resolution physical map targeting a cluster of yield-related QTLs on the long arm of rice chromosome 9 has been constructed across a 37.4 kb region containing seven predicted genes. Using a series of BC3F4 nearly isogenic lines (NILs) derived from a cross between the Korean japonica cultivar Hwaseongbyeo and Oryza rufipogon (IRGC 105491), a total of seven QTLs for 1,000-grain weight, spikelets per panicle, grains per panicle, panicle length, spikelet density, heading date and plant height were identified in the cluster (P ≤ 0.0001). All seven QTLs were additive, and alleles from the low-yielding O. rufipogon parent were beneficial in the Hwaseongbyeo background. Yield trials with BC3F4 NILs showed that lines containing a homozygous O. rufipogon introgression in the target region out-yielded sibling NILs containing Hwaseongbyeo DNA by 14.2–17.7%, and out-yielded the Hwaseongbyeo parent by 16.2–23.7%. While higher yielding plants containing the O. rufipogon introgression were also taller and later than controls, the fact that all seven of the QTLs were co-localized in the same 37.4 kb interval suggests the possibility that a single, pleiotropic gene acting as a major regulator of plant development may control this suite of agronomically important plant phenotypes.

Abbreviations

TGW

1,000-Grain weight

Notes

Acknowledgments

This study was supported by grants to S.N.A. from the BioGreen 21 project (Code No. 20070301034034) of the RDA, from the Crop Functional Genomics Center of the 21st Century Frontier Research Program (Project no. CG3113), Republic of Korea.

References

  1. Ammiraju JSS, Luo M, Goicoechea JL, Wang W, Kudma D et al. (2006) The Oryza bacterial artificial chromosome library resource: construction and analysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus Oryza. Genome Res 16:140–147PubMedCrossRefGoogle Scholar
  2. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745PubMedCrossRefGoogle Scholar
  3. Brar DS, Khush G (1997) Alien introgression in rice. Plant Mol Biol 35:35–47PubMedCrossRefGoogle Scholar
  4. Cai HW, Morishima H (2002) QTL clusters reflect character associations in wild and cultivated rie. Theor Appl Genet 104:1217–1228PubMedCrossRefGoogle Scholar
  5. Cho YC, Suh JP, Choi IS, Hong HC, Beak MK, Kang KH, Kim YG, Ahn SN, Choi HC, Hwang HG, Moon HP (2003) QTLs analysis of yield and its related traits in wild rice relative Oryza rufipogon. Treatises Crop Res Korea 4:19–29Google Scholar
  6. Fan C, Xing YZ, Mao HL, Lu TT, Han B, Xu C, Li XH, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171PubMedCrossRefGoogle Scholar
  7. Frary A, Nesbitt TC, Frary A, Grandillo S, Knaap EVD, Cong B, Liu JP, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88PubMedCrossRefGoogle Scholar
  8. Goff SA, Ricke D, Lan TH, Presting G, Wang R et al. (2002) A draft sequence of the rice genome (Oryza sative L. spp. japonica). Science 296:92–100PubMedCrossRefGoogle Scholar
  9. Gu XY, Kianian SF, Foley ME (2005) Dormancy genes from weedy rice respond divergently to seed development environments. Genetics 171:695–704PubMedCrossRefGoogle Scholar
  10. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  11. Khush G (2003) What will it take to feed 5.0 billion rice consumers in 2030? Plant Mol Biol 59:1–6CrossRefGoogle Scholar
  12. Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under shortday conditions. Plant Cell Physiol 43:1096–1105PubMedCrossRefGoogle Scholar
  13. Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X et al (2003) Control of tillering in rice. Nature 422:618–621PubMedCrossRefGoogle Scholar
  14. Li J, Xiao J, Grandillo S, Jiang L, Wan Y, Deng Q, Yuan L, McCouch SR (2004a) QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O. sativa L.) and African (O. glaberrima S.) rice. Genome 47:697–704PubMedCrossRefGoogle Scholar
  15. Li J, Thomson M, McCouch SR (2004b) Fine mapping of a grain-wieght quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics 168:2187–2195PubMedCrossRefGoogle Scholar
  16. Liu J, Van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA 99:13302–13306PubMedCrossRefGoogle Scholar
  17. McClung AM, Marchetti MA, Webb BD, Bollich CN (1997) Registration of “Jefferson” rice. Crop Sci 37:629–630CrossRefGoogle Scholar
  18. McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush G, Coffman WR, Tanksley SD (1988) Molecular mapping of rice chromosomes. Theor Appl Genet 76:815–829CrossRefGoogle Scholar
  19. McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y et al. (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207PubMedCrossRefGoogle Scholar
  20. McCouch SR, Sweeney M, Li J, Jiang H, Thomson M, Septiningsih E, Edwards J, Moncada P, Xiao J, Garris A, Tai T, Martinez C, Tohme J, Sugiono M, McClung A, Yuan L, Ahn SN (2007) Through the genetic bottleneck: O. rufipogon as a source of trait-enhancing alleles for O. sativa. Euphytica 154:317–339CrossRefGoogle Scholar
  21. Moncada P, Martinez CP, Borrero J, Chatel M, Gauch H, Guimaraes E, Tohme J, McCouch SR (2001) Quantitative trai loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet 102:41–52CrossRefGoogle Scholar
  22. Nelson JC (1997) QGENE: software for marker-based genomic analysis and breeding. Mol Breed 3:239–245CrossRefGoogle Scholar
  23. Panaud O, Chen X, McCouch SR (1996) Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet 252:597–607PubMedGoogle Scholar
  24. Price AH, Townend J, Jones MP, Audebert A, Courtois B (2002) Mapping QTLs associated with drought avoidance in upland rice grown in the Philippines and West Africa. Plant Mol Biol 48:683–695PubMedCrossRefGoogle Scholar
  25. Ragot M, Sisco PH, Hoisington DA, Stuber CW (1995) Molecular-marker-mediated characterization of favourable exotic alleles at quantitative trait loci in maize. Crop Sci 35:1306–1315CrossRefGoogle Scholar
  26. Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M (2006) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol 24:105–109PubMedCrossRefGoogle Scholar
  27. Septiningsih EM., Trijatmiko S, Moeljopawiro S, McCouch SR (2003) Identification of quantitative trait loci for grain quality in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1433–1441PubMedCrossRefGoogle Scholar
  28. Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630. doi: 10.1038/ng2014 PubMedCrossRefGoogle Scholar
  29. Tanksley SD, McCouch SR (1997) Seed banks and molecular maps; unlocking genetic potential from the wild. Science 277:1063–1066PubMedCrossRefGoogle Scholar
  30. Temnykh S, Park W, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 100:697–712CrossRefGoogle Scholar
  31. Temnykh S, DeClerk G, Lukashova A, Lipovich L, Cartinhour S, McCouch SR (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length, transposon associations, and genetic marker potential. Genome Res 11:1141–1452CrossRefGoogle Scholar
  32. Thomson M J, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa culivar Jefferson. Theor Appl Genet 107:479–493PubMedCrossRefGoogle Scholar
  33. Wissuwa M, Wegner J, Ae N, Yano M (2002) Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theor Appl Genet 105:890–897PubMedCrossRefGoogle Scholar
  34. Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD, McCouch SR (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150:899–909PubMedGoogle Scholar
  35. Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644PubMedCrossRefGoogle Scholar
  36. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2483PubMedCrossRefGoogle Scholar
  37. Yu J, Hu SN, Wang J, Wong GKK, Li S et al (2002) A draft sequence of the rice genome (Oryza sativa L. spp. indica). Science 296:79–92PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Xiaobo Xie
    • 1
    • 2
  • Fengxue Jin
    • 1
  • Mi-Hee Song
    • 1
  • Jung-Pil Suh
    • 3
  • Hung-Goo Hwang
    • 3
  • Yeon-Gyu Kim
    • 3
  • Susan R. McCouch
    • 4
  • Sang-Nag Ahn
    • 1
  1. 1.College of Agriculture and Life SciencesChungnam National UniversityDaejeonSouth Korea
  2. 2.Institute of HorticultureZhejiang Academy of Agricultural SciencesHangzhouChina
  3. 3.National Institute of Crop ScienceRural Development AdministrationSuwonSouth Korea
  4. 4.Department of Plant Breeding and GeneticsCornell UniversityIthacaUSA

Personalised recommendations