Theoretical and Applied Genetics

, Volume 116, Issue 3, pp 427–438

Resistance to Erysiphe necator in the grapevine ‘Kishmish vatkana’ is controlled by a single locus through restriction of hyphal growth

  • Sarolta Hoffmann
  • Gabriele Di Gaspero
  • László Kovács
  • Susanne Howard
  • Erzsébet Kiss
  • Zsuzsanna Galbács
  • Raffaele Testolin
  • Pál Kozma
Original Paper

Abstract

Vitis vinifera ‘Kishmish vatkana’, a cultivated grapevine from Central Asia, does not produce visible symptoms in response to natural or artificial inoculation with the fungus Erysiphe necator Schwein., the casual agent of powdery mildew. ‘Kishmish vatkana’ allowed pathogen entry into epidermal cells at a rate comparable to that in the susceptible control Vitis vinifera ‘Nimrang’, but was able to limit subsequent hyphal proliferation. Density of conidiophores was significantly lower in ‘Kishmish vatkana’ (33.6 ± 8.7 conidiophores mm−2) than in ‘Nimrang’ (310.5 ± 24.0 conidiophores mm−2) by 120 h after inoculation. A progeny of 310 plants from a ‘Nimrang’ × ‘Kishmish vatkana’ cross were scored for the presence or absence of visible conidiophores throughout two successive seasons. Phenotypic segregation revealed the presence of a single dominant allele termed Resistance to Erysiphe necator 1 (REN1), which was heterozygous in ‘Kishmish vatkana’. A bulked segregant analysis was carried out using 195 microsatellite markers uniformly distributed across the entire genome. For each marker, association with the resistance trait was inferred by measuring in the bulks the ratio of peak intensities of the two alleles inherited from ‘Kishmish vatkana’. The phenotypic locus was assigned to linkage group 13, a genomic region in which no disease resistance had been reported previously. The REN1 position was restricted to a 7.4 cM interval by analyzing the 310 offspring for the segregation of markers that surrounded the target region. The closest markers, VMC9H4-2, VMCNG4E10-1 and UDV-020, were located 0.9 cM away from the REN1 locus.

Supplementary material

122_2007_680_MOESM1_ESM.tif (6.4 mb)
Figure S1. Microsatellite markers used for bulked segregant analysis. A set of 291 microsatellite markers scattered over the genome was selected in order to evenly cover all linkage groups. Microsatellites belonged to the markers series scu, UDV, VMC, VrZag, VVI, and VVS (Di Gaspero et al., 2007). Marker orders and distances are based on the consensus map of Doligez et al. (2006). Gaps were filled in with additional markers present in the consensus map of Di Gaspero et al. (2007). Each additional marker was projected onto the map of Doligez et al. (2006) in the interval between the surrounding two markers shared by the two maps in a position at the centre center of the interval. No map distance is given for these markers in this map. Bold markers were heterozygous in ‘Kishmish vatkana’ and hence informative for BSA (TIF 6.34 kb)

References

  1. Adam-Blondon AF, Roux C, Claux D, Butterlin G, Merdinoglu D, This P (2004) Mapping 245 SSR markers on the Vitis vinifera genome: a tool for grape genetics. Theor Appl Genet 109:1017–1027PubMedCrossRefGoogle Scholar
  2. Akkurt M, Welter L, Maul E, Töpfer R, Zyprian E (2006) Development of SCAR markers linked to powdery mildew (Uncinula necator) resistance in grapevine (Vitis vinifera L. and Vitis sp.). Mol Breed 19:103–111CrossRefGoogle Scholar
  3. Barker CL, Donald T, Pauquet J, Ratnaparkhe MB, Bouquet A, Adam-Blondon AF, Thomas MR, Dry I (2005) Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theor Appl Genet 111:370–377PubMedCrossRefGoogle Scholar
  4. Bouquet A (1986) Introduction dans l’espèce Vitis vinifera L. d’un caractère de résistance à l’oidium (Uncinula necator Schw. Burr.) issu de l’espèce Muscadinia rotundifolia (Michx.) Small. Vignevini 12(suppl):141–146Google Scholar
  5. Boyd LA, Smith PH, Foster EM, Brown JKM (1995) The effect of allelic variation at the Mla resistance locus in barley on the early development of Erysiphe graminis f.sp. hordei and host responses. Plant J 7:959–968CrossRefGoogle Scholar
  6. Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, Töpsch S, Vos P, Salamini F, Schulze-Lefert P (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705PubMedCrossRefGoogle Scholar
  7. Castellarin SD, Di Gaspero G, Marconi R, Nonis A, Peterlunger E, Paillard S, Adam-Blondon A-F, Testolin R (2006) Colour variation in red grapevines (Vitis vinifera L.): genomic organisation, expression of flavonoid 3′-hydroxylase, flavonoid 3′,5′-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. BMC Genomics 7:12PubMedCrossRefGoogle Scholar
  8. Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu J-L, Hückelhoven R, Stein M, Freialdenhoven A, Somerville SC, Schulze-Lefert P (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425:973–977PubMedCrossRefGoogle Scholar
  9. Consonni C, Humphry ME, Hartmann HA, Livaja M, Durner J, Westphal L, Vogel J, Lipka V, Kemmerling B, Schulze-Lefert P, Somerville SC, Panstruga R (2006) Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nat Genet 38:716–720PubMedCrossRefGoogle Scholar
  10. Dalbó MA, Ye GN, Weeden NF, Wilcox WF, Reisch BI (2001) Marker-assisted selection for powdery mildew resistance in grapes. J Am Soc Hort Sci 26:83–89Google Scholar
  11. de Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) CarthaGene: multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics 21:1703–1704PubMedCrossRefGoogle Scholar
  12. Di Gaspero G, Cipriani G, Adam-Blondon AF, Testolin R (2007) Linkage maps of grapevine displaying the chromosomal locations of 420 microsatellite markers and 82 markers from R-gene candidates. Theor Appl Genet 114:1249–1263PubMedCrossRefGoogle Scholar
  13. Doligez A, Adam-Blondon AF, Cipriani G, Di Gaspero G, Laucou V, Merdinoglu D, Meredith CP, Riaz S, Roux C, This P (2006) An integrated SSR map of grapevine based on five mapping populations. Theor Appl Genet 113:369–382PubMedCrossRefGoogle Scholar
  14. Donald TM, Pellerone F, Adam-Blondon AF, Bouquet A, Thomas MR, Dry IB (2002) Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. Theor Appl Genet 104:610–618PubMedCrossRefGoogle Scholar
  15. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  16. Eibach R, Zyprian E, Welter L, Töpfer R (2007) The use of molecular markers for pyramiding resistance genes in grapevine breeding. Vitis 46:120–124Google Scholar
  17. Epstein L, Bassien S (2003) Patterns of pesticide use in California and the implications for strategies for reduction of pesticides. Annu Rev Phytopathol 41:351–375PubMedCrossRefGoogle Scholar
  18. Fernandez L, Doligez A, Lopez G, Thomas MR, Bouquet A, Torregrosa L (2006) Somatic chimerism, genetic inheritance, and mapping of the fleshless berry (flb) mutation in grapevine (Vitis vinifera L.). Genome 49:721–728PubMedCrossRefGoogle Scholar
  19. Feys BJ, Wiermer M, Bhat RA, Moisan LJ, Medina-Escobar N, Neu C, Cabral A, Parker JE (2005) Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILTY1 complex in plant innate immunity. Plant Cell 17:2601–2613PubMedCrossRefGoogle Scholar
  20. Filippenko IM, Stin LT (1977) Szort evropejskogo vida Vitis vinifera L. Dzhandzhal kara usztojcsiv k oidiumu. (Vitis vinifera L. ‘Dzhandzhal kara’ is resistant to powdery mildew). Bull Nauchn Inform CGL im IV Michurina 25:57–58. Michurinsk, RussiaGoogle Scholar
  21. Fischer BM, Salakhutdinov I, Akkurt M, Eibach R, Edwards KJ, Töpfer R, Zyprian EM (2004) Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet 108:501–515PubMedCrossRefGoogle Scholar
  22. Fung RW, Gonzalo M, Fekete C, Kovacs LG, He Y, Marsh E, McIntyre LM, Schachtman DP, Qiu W (2007) Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiol. doi:10.1104/pp.107.108712 PubMedGoogle Scholar
  23. Goto-Yamamoto N, Wan GH, Masaki K, Kobayashi S (2002) Structure and transcription of three chalcone synthase genes of grapevine (Vitis vinifera). Plant Sci 162:867–872CrossRefGoogle Scholar
  24. IPGRI, UPOV, OIV (1997) Descripteurs de la Vigne (Vitis spp.). Union internationale pour la protection des obtentions végétales, Genève, Suisse; Office International de la Vigne et du Vin, Paris, France; Institut international des ressources phytogénétiques, Rome, ItalyGoogle Scholar
  25. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  26. Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D, Llorente F, Molina A, Parker J, Somerville S, Schulze-Lefert P (2005) Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310:1180–1183PubMedCrossRefGoogle Scholar
  27. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. PNAS 88:9828–9832PubMedCrossRefGoogle Scholar
  28. Miller TC, WD Gubler (2004) Sensitivity of California isolates of Uncinula necator to trifloxystrobin and spiroxamine, and update on triadimefon sensitivity. Plant Dis 88:1205–1212CrossRefGoogle Scholar
  29. Negrul AM (1936) The genetic basis of grape breeding. Bulletin of applied botany, genetics and plant breeding. The Lenin Academy of Agricultural Sciences. MoscowGoogle Scholar
  30. Negrul AM (1968) The origin of the cultivated vine. Dokl Sel’skohoz Acad Timirjazev 139:329–338Google Scholar
  31. Pauquet J, Bouquet A, This P, Adam-Blondon A-F (2001) Establishment of a local map of AFLP markers around the powdery mildew resistance gene Run1 in grapevine and assessment of their usefulness for marker assisted selection. Theor Appl Genet 103:1201–1210CrossRefGoogle Scholar
  32. Pearson RC (1988) Powdery mildew. In: Pearson RC, Goheen AC (eds) Compendium of grape diseases. APS, St PaulGoogle Scholar
  33. Rumbolz J, Kassenmayer HH, Steinmetz V, Deising HB, Mendgen K, Mathys D, Wirtz S, Guggenheim R (2000) Differentiation of infection structures of the powdery mildew fungus Uncinula necator and adhesion to the host cuticle. Can J Bot 78:409–421CrossRefGoogle Scholar
  34. Saccardo PA (1882) Sylloge Fungorum. 1: 22 Padua, ItalyGoogle Scholar
  35. Stein M, Dittgen J, Sanchez-Rodriquez C, Hou B-H, Molina A, Schulze-Lefert P, Lipka V, Somerville S (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18:731–746PubMedCrossRefGoogle Scholar
  36. This P, Lacombe T, Thomas M (2006) Historical origin and genetic diversity of wine grapes. Trends Genet 22:511–519PubMedCrossRefGoogle Scholar
  37. Vojtovic KA (1987) Vospriimchivost sortov vinograda k oidiumu. In: Novüje kompleksno - ustojchevüje stolovüje sorta vinograda i metodü ih polichenija. (Powdery mildew susceptibility of grapevine cultivars. In: New complex resistant table grape cultivars and methods for breeding.) Kisinev Kartja Moldovenjaske, Kishinev, Moldova, pp 42–46Google Scholar
  38. Wan Y, Schwaniniger H, He P, Wang Y (2007) Comparison of resistance to powdery mildew and downy mildew in Chinese wild grapes. Vitis 46:132–136Google Scholar
  39. Welter LJ, Göktürk-Baydar N, Akkurt M, Maul E, Eibach R, Töpfer R, Zyprian EM (2007) Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L). Mol Breed 20:359–374CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Sarolta Hoffmann
    • 1
  • Gabriele Di Gaspero
    • 2
    • 3
  • László Kovács
    • 4
  • Susanne Howard
    • 4
  • Erzsébet Kiss
    • 5
  • Zsuzsanna Galbács
    • 5
  • Raffaele Testolin
    • 2
    • 3
  • Pál Kozma
    • 1
  1. 1.Research Institute of Viticulture and EnologyPecsHungary
  2. 2.Dipartimento di Scienze Agrarie e AmbientaliUniversity of UdineUdineItaly
  3. 3.Istituto di Genomica ApplicataParco Scientifico e Tecnologico Luigi DanieliUdineItaly
  4. 4.Department of AgricultureMissouri State UniversityMountain GroveUSA
  5. 5.Institute of Genetics and BiotechnologySzent István UniversityGödöllöHungary

Personalised recommendations