Theoretical and Applied Genetics

, Volume 115, Issue 6, pp 767–776

A marker-assisted backcross approach for developing submergence-tolerant rice cultivars

  • C. N. Neeraja
  • R. Maghirang-Rodriguez
  • A. Pamplona
  • S. Heuer
  • B. C. Y. Collard
  • E. M. Septiningsih
  • G. Vergara
  • D. Sanchez
  • K. Xu
  • A. M. Ismail
  • D. J. Mackill
Original Paper

Abstract

Submergence stress regularly affects 15 million hectares or more of rainfed lowland rice areas in South and Southeast Asia. A major QTL on chromosome 9, Sub1, has provided the opportunity to apply marker assisted backcrossing (MAB) to develop submergence tolerant versions of rice cultivars that are widely grown in the region. In the present study, molecular markers that were tightly linked with Sub1, flanking Sub1, and unlinked to Sub1 were used to apply foreground, recombinant, and background selection, respectively, in backcrosses between a submergence-tolerant donor and the widely grown recurrent parent Swarna. By the BC2F2 generation a submergence tolerant plant was identified that possessed Swarna type simple sequence repeat (SSR) alleles on all fragments analyzed except the tip segment of rice chromosome 9 that possessed the Sub1 locus. A BC3F2 double recombinant plant was identified that was homozygous for all Swarna type alleles except for an approximately 2.3–3.4 Mb region surrounding the Sub1 locus. The results showed that the mega variety Swarna could be efficiently converted to a submergence tolerant variety in three backcross generations, involving a time of two to three years. Polymorphic markers for foreground and recombinant selection were identified for four other mega varieties to develop a wider range of submergence tolerant varieties to meet the needs of farmers in the flood-prone regions. This approach demonstrates the effective use of marker assisted selection for a major QTL in a molecular breeding program.

Supplementary material

References

  1. Ashikari M, Sakakibara H, Lin SY, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745PubMedCrossRefGoogle Scholar
  2. Chen S, Lin XH, Xu CG, Zhang QF (2000) Improvement of bacterial blight resistance of ‘Minghui 63’, an elite restorer line of hybrid rice, by molecular marker-assisted selection. Crop Sci 40:239–244CrossRefGoogle Scholar
  3. Chen S, Xu CG, Lin XH, Zhang Q (2001) Improving bacterial blight resistance of ‘6078’, an elite restorer line of hybrid rice, by molecular marker-assisted selection. Plant Breed 120:133–137CrossRefGoogle Scholar
  4. Collard BCY, Mackill DJ (2006) Marker-assisted selection: an approach for precision plant breeding in the 21st century. Philos Trans R Soc B Rev. doi:10.1098/rstb.2007.2170
  5. Dey MM, Upadhyaya HK (1996) Yield loss due to drought, cold and submergence in Asia. In: Evenson RE, Herdt RW, Hossain M (eds) Rice research in Asia: progress and priorities. CAB International, Wallingford, pp 291–303Google Scholar
  6. Frisch M, Bohn M, Melchinger AE (1999a) Comparison of selection strategies for marker-assisted backcrossing of a gene. Crop Sci 39:1295–1301CrossRefGoogle Scholar
  7. Frisch M, Bohn M, Melchinger AE (1999b) Minimum sample size and optimal positioning of flanking markers in marker-assisted backcrossing for transfer of a target gene. Crop Sci 39:967–975CrossRefGoogle Scholar
  8. Frisch M, Melchinger AE (2005) Selection theory for marker-assisted backcrossing. Genetics 170:909–917PubMedCrossRefGoogle Scholar
  9. Fukao T, Xu K, Ronald PC, Bailey-Serres J (2006) A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18:2021–2034PubMedCrossRefGoogle Scholar
  10. Herdt RW (1991) Research priorities for rice biotechnology. In: Khush GS, Toenniessen GH (eds) Rice biotechnology. CAB International, Oxon, UK, pp 19–54Google Scholar
  11. HilleRisLambers D, Vergara BS (1982) Summary results of an international collaboration on screening methods for flood tolerance. In: Proceedings of the 1981 international deepwater rice workshop. International Rice Research Institute, Los Baños, Philippines, pp 347–353Google Scholar
  12. Hospital F (2001) Size of donor chromosome segments around introgressed loci and reduction of linkage drag in marker-assisted backcross programs. Genetics 158:1363–1379PubMedGoogle Scholar
  13. Hospital F (2003) Marker-assisted breeding. In: Newbury HJ (ed) Plant molecular breeding. Blackwell Publishing, Oxford, pp 30–59Google Scholar
  14. Hospital F, Charcosset A (1997) Marker-assisted introgression of quantitative trait loci. Genetics 147:1469–1485PubMedGoogle Scholar
  15. Hospital F, Chevalet C, Mulsant P (1992) Using markers in gene introgression breeding programs. Genetics 132:1199–1210PubMedGoogle Scholar
  16. Ideta O, Yoshimura A, Iwata N (1995) An integrated linkage map of rice. In: Rice genetics III: proceedings of the 3rd international rice genetics symposium October 1995. International Rice Research Institute, Manila, Philippines, pp 47–56Google Scholar
  17. IRGSP (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  18. Mackill DJ (1986) Rainfed lowland rice improvement in South and Southeast Asia: results of a survey. In: Progress in rainfed lowland rice. International Rice Research Institute, Los Baños, Philippines, pp 115–144Google Scholar
  19. Mackill DJ (2006) Breeding for resistance to abiotic stresses in rice: the value of quantitative trait loci. In: Lamkey KR, Lee M (eds) Plant breeding: the Arnel R Hallauer international symposium. Blackwell Pub, Ames, IA, pp 201–212Google Scholar
  20. Mackill DJ, Amante MM, Vergara BS, Sarkarung S (1993) Improved semidwarf rice lines with tolerance to submergence of seedlings. Crop Sci 33:749–753CrossRefGoogle Scholar
  21. Mackill DJ, Coffman WR, Garrity DP (1996) Rainfed lowland rice improvement. International Rice Research Institute, ManilaGoogle Scholar
  22. Mackill DJ, Collard BCY, Neeraja CN, Rodriguez RM, Heuer S, Ismail AM (2006) QTLs in rice breeding: examples for abiotic stresses. In: Brar DS, Mackill DJ, Hardy B (eds) Rice genetics 5: proceedings of the international rice genetics symposium. International Rice Research Institute, Manila, pp 155–167Google Scholar
  23. McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Zing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207PubMedCrossRefGoogle Scholar
  24. Mohanty HK, Chaudhary RC (1986) Breeding for submergence tolerance in rice in India. In: Progress in rainfed lowland rice. International Rice Research Institute, Los Baños, Philippines, pp 191–200Google Scholar
  25. Nandi S, Subudhi PK, Senadhira D, Manigbas NL, Sen-Mandi S, Huang N (1997) Mapping QTLs for submergence tolerance in rice by AFLP analysis and selective genotyping. Mol Gen Genet 255:1–8PubMedCrossRefGoogle Scholar
  26. Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146PubMedCrossRefGoogle Scholar
  27. Salina E, Dobrovolskaya O, Efremova T, Leonova I, Roder MS (2003) Microsatellite monitoring of recombination around the Vrn-B1 locus of wheat during early backcross breeding. Plant Breed 122:116–119CrossRefGoogle Scholar
  28. Sarkar RK, Reddy JN, Sharma SG, Ismail AM (2006) Physiological basis of submergence tolerance in rice and implications for crop improvement. Curr Sci 91:899–906Google Scholar
  29. Servin B, Hospital F (2002) Optimal positioning of markers to control genetic background in marker-assisted backcrossing. J Hered 93:214–217PubMedCrossRefGoogle Scholar
  30. Servin B, Martin OC, Mezard M, Hospital F (2004) Toward a theory of marker-assisted gene pyramiding. Genetics 168:513–523PubMedCrossRefGoogle Scholar
  31. Siangliw M, Toojinda T, Tragoonrung S, Vanavichit A (2003) Thai jasmine rice carrying QTLch9 (SubQTL) is submergence tolerant. Ann Bot 91:255–261PubMedCrossRefGoogle Scholar
  32. Takeuchi Y, Ebitani T, Yamamoto T, Sato H, Ohta H, Hirabayashi H, Kato H, Ando I, Nemoto H, Imbe T, Yano M (2006) Development of isogenic lines of rice cultivar Koshihikari with early and late heading by marker-assisted selection. Breed Sci 56:405–413CrossRefGoogle Scholar
  33. Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Biotechnology 7:257–264CrossRefGoogle Scholar
  34. Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): Frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452PubMedCrossRefGoogle Scholar
  35. Toojinda T, Tragoonrung S, Vanavichit A, Siangliw JL, Pa-In N, Jantaboon J, Siangliw M, Fukai S (2005) Molecular breeding for rainfed lowland rice in the Mekong region. Plant Prod Sci 8:330–333CrossRefGoogle Scholar
  36. Visscher PM, Haley CS, Thompson R (1996) Marker-assisted introgression in backcross breeding programs. Genetics 144:1923–1932PubMedGoogle Scholar
  37. Xu K, Mackill DJ (1996) A major locus for submergence tolerance mapped on rice chromosome 9. Mol Breed 2:219–224CrossRefGoogle Scholar
  38. Xu K, Xia X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AI, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene response factor-like gene that confers submergence tolerance to rice. Nature 442:705–708PubMedCrossRefGoogle Scholar
  39. Xu K, Xu X, Ronald PC, Mackill DJ (2000) A high-resolution linkage map in the vicinity of the rice submergence tolerance locus Sub1. Mol Gen Genet 263:681–689PubMedCrossRefGoogle Scholar
  40. Xu KN, Deb R, Mackill DJ (2004) A microsatellite marker and a codominant PCR-based marker for marker-assisted selection of submergence tolerance in rice. Crop Sci 44:248–253CrossRefGoogle Scholar
  41. Young ND, Tanksley SD (1989) RFLP analysis of the size of chromosomal segments retained around the tm-2 locus of tomato during backcross breeding. Theor Appl Genet 77:353–359CrossRefGoogle Scholar
  42. Zheng K, Subudhi PK, Domingo J, Magpantay G, Huang N (1995) Rapid DNA isolation for marker assisted selection in rice breeding. Rice Genet Newsl 12:255–258Google Scholar
  43. Zhou PH, Tan YF, He YQ, Xu CG, Zhang Q (2003) Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection. Theor Appl Genet 106:326–331PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • C. N. Neeraja
    • 1
    • 2
  • R. Maghirang-Rodriguez
    • 1
    • 3
  • A. Pamplona
    • 1
  • S. Heuer
    • 1
  • B. C. Y. Collard
    • 1
    • 4
  • E. M. Septiningsih
    • 1
  • G. Vergara
    • 1
  • D. Sanchez
    • 1
  • K. Xu
    • 5
  • A. M. Ismail
    • 1
  • D. J. Mackill
    • 1
  1. 1.International Rice Research InstituteMetro ManilaPhilippines
  2. 2.Directorate of Rice ResearchHyderabadIndia
  3. 3.Greenwood Genetic CenterGreenwoodUSA
  4. 4.Department of Primary Industries and FisheriesHermitage Research StationWarwickAustralia
  5. 5.Department of Viticulture and EnologyUniversity of CaliforniaDavisUSA

Personalised recommendations