Advertisement

Theoretical and Applied Genetics

, Volume 114, Issue 8, pp 1427–1435 | Cite as

Identification of QTL for resistance and susceptibility to Stagonospora meliloti in autotetraploid lucerne

  • J. M. MusialEmail author
  • J. M. Mackie
  • D. J. Armour
  • H. T. T. Phan
  • S. E. Ellwood
  • K. S. Aitken
  • J. A. G. Irwin
Original Paper

Abstract

In eastern Australia and California, USA, one of the major lethal fungal diseases of lucerne (Medicago sativa) is Stagonospora root and crown rot, caused by Stagonospora meliloti. Quantitative trait loci (QTL) involved in resistance and susceptibility to S. meliloti were identified in an autotetraploid lucerne backcross population of 145 individuals. Using regression analysis and interval mapping, we detected one region each on linkage groups 2, 6 and 7 that were consistently associated with disease reaction to S. meliloti in two separate experiments. The largest QTL on linkage group 7, which is associated with resistance to S. meliloti, contributed up to 17% of the phenotypic variation. The QTL located on linkage group 2, which is potentially a resistance allele in repulsion to the markers for susceptibility to S. meliloti, contributed up to 8% of the phenotypic variation. The QTL located on linkage group 6, which is associated with susceptibility to S. meliloti, contributed up to 16% of the phenotypic variation. A further two unlinked markers contributed 5 and 8% of the phenotypic variation, and were detected in only one experiment. A total of 517 simple sequence repeat (SSR) markers from Medicago truncatula were screened on the parents of the mapping population. Only 27 (6%) SSR markers were polymorphic and could be incorporated into the autotetraploid map of M. sativa. This allowed alignment of our M. sativa linkage map with published M. truncatula maps. The markers linked to the QTL we have reported will be useful for marker assisted selection for partial resistance to S. meliloti in lucerne.

Keywords

Alfalfa Molecular markers QTL mapping 

Notes

Acknowledgments

The authors gratefully acknowledge the Cooperative Research Centre for Tropical Plant Protection, the Australian Research Council (LP0454871) and the Grains Research and Development Corporation for providing funding support for the project.

References

  1. Aguilar V, Stamp P, Winzeler M, Winzeler H, Schachermayr G, Keller B, Zanetti S, Messmer MM (2005) Inheritance of field resistance to Stagonospora nodorum leaf and glume blotch and correlations with other morphological traits in hexaploid wheat (Triticum aestivum L.) Theor Appl Genet 111:325–336PubMedCrossRefGoogle Scholar
  2. Barbetti MJ (1988) Fungal diseases of annual medics. In: National Annual Medic Improvement Program – A workshop of the Wheat Research Council. Wheat Research Council, Melbourne, pp 71–75Google Scholar
  3. Bingham ET, Groose RW, Woodfield DR, Kidwell KK (1994) Complementary gene interactions in alfalfa are greater in autotetraploids than diploids. Crop Sci 34:823–829CrossRefGoogle Scholar
  4. Brouwer DJ, Osborn TC (1999) A molecular marker linkage map of tetraploid alfalfa (Medicago sativa L.). Theor Appl Genet 99:1194–1200CrossRefGoogle Scholar
  5. Brummer EC, Bouton JH, Kochert G (1993) Development of an RFLP map in diploid alfalfa. Theor Appl Genet 86:329–332CrossRefGoogle Scholar
  6. Choi HK, Kim D, Uhm T, Limpens E, Lim H, Mun JH, Kalo P, Varma Penmetsa R, Seres A, Kulikova O, Roe BA, Bisseling T, Kiss GB, Cook DR (2004a) A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics 166:1463–1502CrossRefGoogle Scholar
  7. Choi HK, Mun JH, Kim DJ, Zhu H, Baek JM, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Nevin DY, Cook DR (2004b) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA 101:15289–15294CrossRefGoogle Scholar
  8. Echt CS, Kidwell KK, Knapp SJ, Osborn TC, McCoy TJ (1994) Linkage mapping in diploid alfalfa (Medicago sativa). Genome 37:61–71PubMedGoogle Scholar
  9. Erwin DC, Khan RA, Ribeiro OK, Lehman WF (1987) Growth, sporulation, and pathogenicity of Stagonospora meliloti and selection for resistance to crown rot and leaf spot in alfalfa. Plant Dis 71:181–185CrossRefGoogle Scholar
  10. Fisher RA (1947) The theory of polysomic inheritance. Philos Trans R Soc B 233:55–87CrossRefGoogle Scholar
  11. Gutierrez MV, VazPatto MC, Huguet T, Cubero JI, Moreno MT, Torres AM (2005) Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops. Theor Appl Genet 110:1210–1217PubMedCrossRefGoogle Scholar
  12. Hackett CA, Bradshaw JE, Meyer RC, McNicol JW, Milbourne D, Waugh R (1998) Linkage analysis in tetraploid potato: a simulation study. Genet Res 71:143–154CrossRefGoogle Scholar
  13. Hackett CA, Milne I, Bradshaw JE, Luo ZW (2006) TetraploidMap for Windows, Biomathematics and Statistics Scotland. ftp://www.ftp.bioss.sari.ac.uk/pub/cah
  14. Irwin JAG (1989) Diseases of pasture legumes in Australia. In: Marten GC, Matches AG, Barnes RF, Brougham RW, Clements RJ, Sheath GW (eds) Persistence of forage legumes. ASA Inc, MadisonGoogle Scholar
  15. Irwin JAG, Aitken KS, Mackie JM, Musial JM (2006) Lucerne genetic improvement for quantitatively inherited anthracnose (Colletotrichum trifolii) resistance facilitated by molecular markers. Australas Plant Path 35:573–579CrossRefGoogle Scholar
  16. Irwin JAG, Lloyd DL, Lowe KF (2001) Lucerne biology and genetic improvement—an analysis of past activities and future goals in Australia. Aust J Agric Res 52:699–712CrossRefGoogle Scholar
  17. Irwin JAG, Mackie JM, Marney TS, Musial JM, Roberts S (2004) Incidence of Stagonospora meliloti and Acrocalymma medicaginis in lucerne crowns and roots in eastern Australia, their comparative aggressiveness to lucerne and inheritance of reaction to S. meliloti in lucerne. Australas Plant Path 33:61–67CrossRefGoogle Scholar
  18. Jones FR, Weimer JL (1938) Stagonospora leaf spot and root rot of forage legumes. J Agric Res 57:791–812Google Scholar
  19. Julier B, Fajoulot S, Barre P, Cardinet G, Santoni S, Huguet T, Huyghe C (2003) Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biol 3:9PubMedCrossRefGoogle Scholar
  20. Kaló P, Endre G, Zimányi L, Csanádi G, Kiss GB (2000) Construction of an improved linkage map of diploid alfalfa (Medicago sativa). Theor Appl Genet 100:641–657CrossRefGoogle Scholar
  21. Kalo P, Seres A, Taylor SA, Jakab J, Kevei Z, Kereszt A, Endre G, Ellis TH, Kiss GB (2004) Comparative mapping between Medicago sativa and Pisum sativum. Mol Genet Genomics 272:235–246PubMedCrossRefGoogle Scholar
  22. Kiss GB, Csanádi G, Kálmán K, Kaló P, Okrész L (1993) Construction of a basic genetic map for alfalfa using RFLP, RAPD, isozyme and morphological markers. Mol Gen Genet 238:129–137PubMedGoogle Scholar
  23. Leath KT (1989) Diseases and forage stand persistence in the United States. In: Marten GC, Matches AG, Barnes RF, Brougham RW, Clements RF, Sheath GW (eds) Persistence of forage legumes. ASA Inc, MadisonGoogle Scholar
  24. Liu ZH, Friesen TL, Rasmussen JB, Ali S, Meinhardt SW, Faris JD (2004) Quantitative trait loci analysis and mapping of seedling resistance to Stagonospora nodorum leaf blotch in wheat. Phytopathology 94:1061–1067CrossRefPubMedGoogle Scholar
  25. Mackie JM, Musial JM, Armour DJ, Phan HTT, Ellwood SE, Aitken KS, Irwin JAG (2007) Identification of QTL for reaction to three races of Colletotrichum trifolii and further analysis of inheritance of resistance in autotetraploid lucerne. Theor Appl Genet. doi:10.1007/s00122-007-0527-zGoogle Scholar
  26. Manglitz GR, Ratcliffe RH (1988) Insects and mites. In: Hanson AA (ed) Alfalfa and alfalfa improvement. American Society of Agronomy, Madison, pp 671–704Google Scholar
  27. Manly KF, Cudmore RH, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932PubMedCrossRefGoogle Scholar
  28. Mather K (1936) Segregation and linkage in autotetraploids. J Genet 32:287–314CrossRefGoogle Scholar
  29. Mather K (1951) The measurement of linkage in heredity. Methuen and Co Ltd, LondonGoogle Scholar
  30. Michaud R, Lehman WF, Rumbaugh MD (1988) World distribution and historical development. In: Alfalfa and alfalfa improvement. Agronomy Monograph 29. American Society of Agronomy: Madison, pp 25–91Google Scholar
  31. Moore G, Devos KM, Wang Z, Gale MD (1995) Cereal genome evolution, grasses, line up and form a circle. Curr Biol 5:737–739PubMedCrossRefGoogle Scholar
  32. Mun JH, Kim DJ, Choi HK, Gish J, Debellé F, Mudge J, Denny R, Endre G, Saurat O, Dudez AM, Kiss GB, Roe B, Young ND, Cook DR (2006) Distribution of microsatellites in the genome of Medicago truncatula: a resource of genetic markers that integrate genetic and physical maps. Genetics 172:2541–2555PubMedCrossRefGoogle Scholar
  33. Musial JM, Aitken KS, Mackie JM, Irwin JAG (2005) A genetic linkage map in autotetraploid lucerne adapted to northern Australia, and use of the map to identify DNA markers linked to resistance to Phytophthora medicaginis. Aust J Agric Res 56:333–344CrossRefGoogle Scholar
  34. Nelson M, Phan H, Moolhuijzen P, Hane J, Williams A, Fosu-Nyarko J, Ksiazkiewicz M, Scobie M, Cakir M, Jones M, Barker S, Wolko B, Oliver R, Cowling W (2006) The first gene-based map of Lupinus angustifolius L.—location of domestication genes and conserved synteny with Medicago truncatula. Theor Appl Genet 113:225–238PubMedCrossRefGoogle Scholar
  35. Nettleton D (2000) Accounting for variability in the use of permutation testing to detect quantitative trait loci. Biometrics 56:52–58PubMedCrossRefGoogle Scholar
  36. Obert DE, Skinner DZ, Stuteville DL (2000) Association of AFLP markers with downy mildew resistance in autotetraploid alfalfa. Mol Breeding 6:287–294CrossRefGoogle Scholar
  37. Pearson CJ, Brown R, Collins WJ, Archer KA, Wood MS, Petersen C, Boothe B (1997) An Australian temperate pastures database. Aust J Agric Res 48:453–465CrossRefGoogle Scholar
  38. Schnurbusch T, Paillard S, Fossati D, Messmer M, Schachermayr G, Winzeler M, Keller B (2003) Detection of QTLs for Stagonospora glume blotch resistance in Swiss winter wheat. Theor Appl Genet 107:1226–1234PubMedCrossRefGoogle Scholar
  39. Stuteville DL, Erwin DC (1990) Compendium of alfalfa diseases, 2 edn. APS Press, St PaulGoogle Scholar
  40. Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Bio/Technology 7:257–264CrossRefGoogle Scholar
  41. Tavoletti S, Veronesi F, Osborn TC (1996) RFLP linkage map of an alfalfa meiotic mutant based on a F1 population. J Hered 87:167–170Google Scholar
  42. Thoquet P, Gherardi M, Journet EP, Kereszt A, Ane JM, Prosperi JM, Huguet T (2002) The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes. BMC Plant Biol 2:1PubMedCrossRefGoogle Scholar
  43. Tivoli B, Baranger A, Avila CM, Banninza S, Barbetti M, Chen W, Davidson J, Lindeck K, Kharrat M, Rubiales D, Sadiki M, Sillero JC, Sweetingham M, Muehlbauer FJ (2006) Screening techniques and sources of resistance to foliar diseases caused by major necrotrophic fungi on grain legumes. Euphytica 147:223–253CrossRefGoogle Scholar
  44. Vales MI, Schön CC, Capettini F, Chen XM, Corey AE, Mather DE, Mundt CC, Richardson KL, Sandoval-Islas JS, Utz HF, Hayes PM (2005) Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust. Theor Appl Genet 111:1260–1270PubMedCrossRefGoogle Scholar
  45. Vos P, Rogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  46. Wu KK, Burnquist W, Sorrells ME, Tew TL, Moore PH, Tanksley SD (1992) The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet 83:294–300CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • J. M. Musial
    • 1
    Email author
  • J. M. Mackie
    • 1
  • D. J. Armour
    • 1
  • H. T. T. Phan
    • 2
  • S. E. Ellwood
    • 2
  • K. S. Aitken
    • 3
  • J. A. G. Irwin
    • 1
  1. 1.School of Integrative BiologyThe University of QueenslandBrisbaneAustralia
  2. 2.Australian Centre for Necrotrophic Fungal Pathogens, State Agricultural Biotechnology Centre, Health SciencesMurdoch UniversityPerthAustralia
  3. 3.CSIRO Plant IndustryQueensland Bioscience PrecinctSt LuciaAustralia

Personalised recommendations