Advertisement

Theoretical and Applied Genetics

, Volume 114, Issue 7, pp 1249–1263 | Cite as

Linkage maps of grapevine displaying the chromosomal locations of 420 microsatellite markers and 82 markers for R-gene candidates

  • G. Di Gaspero
  • G. Cipriani
  • A.-F. Adam-Blondon
  • R. Testolin
Original Paper

Abstract

Genetic maps functionally oriented towards disease resistance have been constructed in grapevine by analysing with a simultaneous maximum-likelihood estimation of linkage 502 markers including microsatellites and resistance gene analogs (RGAs). Mapping material consisted of two pseudo-testcrosses, ‘Chardonnay’ × ‘Bianca’ and ‘Cabernet Sauvignon’ × ‘20/3’ where the seed parents were Vitis vinifera genotypes and the male parents were Vitis hybrids carrying resistance to mildew diseases. Individual maps included 320–364 markers each. The simultaneous use of two mapping crosses made with two pairs of distantly related parents allowed mapping as much as 91% of the markers tested. The integrated map included 420 Simple Sequence Repeat (SSR) markers that identified 536 SSR loci and 82 RGA markers that identified 173 RGA loci. This map consisted of 19 linkage groups (LGs) corresponding to the grape haploid chromosome number, had a total length of 1,676 cM and a mean distance between adjacent loci of 3.6 cM. Single-locus SSR markers were randomly distributed over the map (CD = 1.12). RGA markers were found in 18 of the 19 LGs but most of them (83%) were clustered on seven LGs, namely groups 3, 7, 9, 12, 13, 18 and 19. Several RGA clusters mapped to chromosomal regions where phenotypic traits of resistance to fungal diseases such as downy mildew and powdery mildew, bacterial diseases such as Pierce’s disease, and pests such as dagger and root-knot nematode, were previously mapped in different segregating populations. The high number of RGA markers integrated into this new map will help find markers linked to genetic determinants of different pest and disease resistances in grape.

Keywords

Simple Sequence Repeat Marker Powdery Mildew Resistance Marker Order Resistance Gene Analog Downy Mildew Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Authors thank A. Fiori, G. Comuzzo, R. Frezza, M. J. Prado Castro, R. Marconi, D. Andreetta, E. Balen for technical work, Friuli Venezia Giulia Regional Administration, Federazione Banche di Credito Cooperativo of FVG and Vivai Cooperativi Rauscedo for funding, M. A. Walker for sharing unpublished data.

Supplementary material

122_2007_516_MOESM1_ESM.xls (98 kb)
XLS 98 kb
122_2007_516_MOESM2_ESM.ppt (662 kb)
PPT 662 kb
122_2007_516_MOESM3_ESM.doc (104 kb)
DOC 105 kb
122_2007_516_MOESM4_ESM.jpg (2.5 mb)
JPG 2.54 MB

References

  1. Adam-Blondon AF, Roux C, Claux D, Butterlin G, Merdinoglu D, This P (2004) Mapping 245 SSR markers on the Vitis vinifera genome: a tool for grape genetics. Theor Appl Genet 109:1017–1027PubMedCrossRefGoogle Scholar
  2. Akkurt M, Welter L, Maul E, Töpfer R, Zyprian E (2007) Development of SCAR markers linked to powdery mildew (Uncinula necator) resistance in grapevine (Vitis vinifera L. and Vitis sp.). Mol Breed 19:103–111CrossRefGoogle Scholar
  3. Aradhya MK, Dangl GS, Prins BH, Boursiquot J-M, Walker MA, Meredith CP, Simon CJ (2003) Genetic structure and differentiation in cultivated grape, Vitis vinifera L. Genet Res 81:179–192PubMedCrossRefGoogle Scholar
  4. Axtell MJ, McNellis TW, Mudgett MB, Hsu CS, Staskawicz BJ (2001) Mutational analysis of the Arabidopsis RPS2 disease resistance gene and the corresponding Pseudomonas syringae avrRpt2 avirulence gene. Mol Plant Microbe Interact 14:181–188PubMedGoogle Scholar
  5. Bai J, Pennill LA, Ning J, Lee SW, Ramalingam J, Webb CA, Zhao B, Sun Q, Nelson JC, Leach JE, Hulbert SH (2002) Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res 12:1871–1884PubMedCrossRefGoogle Scholar
  6. Barker CL, Donald T, Pauquet J, Ratnaparkhe MB, Bouquet A, Adam-Blondon AF, Thomas MR, Dry I (2005) Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theor Appl Genet 11:370–377CrossRefGoogle Scholar
  7. Baumgarten A, Cannon S, Spangler R, May G (2003) Genome-level evolution of resistance genes in Arabidopsis thaliana. Genetics 165:309–319PubMedGoogle Scholar
  8. Cannon SB, Zhu H, Baumgarten AM, Spangler R, May G, Cook DR, Young ND (2002) Diversity, distribution, and ancient taxonomic relationships within the TIR and non-TIR NBS–LRR resistance gene subfamilies. J Mol Evol 54:548–562PubMedCrossRefGoogle Scholar
  9. Castellarin SD, Di Gaspero G, Marconi R, Nonis A, Peterlunger E, Paillard S, Adam-Blondon A-F, Testolin R (2006) Colour variation in red grapevines (Vitis vinifera L.): genomic organisation, expression of flavonoid 3′-hydroxylase, flavonoid 3′,5′-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. BMC Genomics 7:12PubMedCrossRefGoogle Scholar
  10. Cervera MT, Storme V, Ivens B, Gusmao J, Liu BH, Hostyn V, van Slycken J, van Montagu M, Boerjan W (2001) Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers. Genetics 158:787–809PubMedGoogle Scholar
  11. Cindric P, Korac N, Kovac V (2000) Grape breeding in the vojvodina province. Acta Hortic 528:499–504Google Scholar
  12. Csizmazia J, Bereznai L (1968) A szõlõ Plasmopara viticola és a Viteus vitifolii elleni rezisztencia nemesités eredményei. Orsz Szõl Bor Kut Int Évkönyve, Budapest, pp 191–200Google Scholar
  13. Dalbó MA, Ye GN, Weeden NF, Steinkellner H, Sefc KM, Reisch BI (2000) A gene controlling sex in grapevines placed on a molecular marker-based genetic map. Genome 43:333–340PubMedCrossRefGoogle Scholar
  14. Dalbó MA, Ye GN, Weeden NF, Wilcox WF, Reisch BI (2001) Marker-assisted selection for powdery mildew resistance in grapes. J Am Soc Hortic 126:83–89Google Scholar
  15. de Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) CarthaGene: multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics 21:1703–1704PubMedCrossRefGoogle Scholar
  16. Di Gaspero G, Cipriani G (2002) Resistance gene analogs are candidate markers for disease-resistance genes in grape (Vitis spp.). Theor Appl Genet 106:163–172PubMedGoogle Scholar
  17. Di Gaspero G, Cipriani G (2003) Nucleotide binding site/leucine-rich repeats, Pto-like and receptor-like kinases related to disease resistance in grapevine. Mol Genet Genomics 269:612–623PubMedCrossRefGoogle Scholar
  18. Di Gaspero G, Cipriani G, Marrazzo MT, Andreetta D, Prado Castro MJ, Peterlunger E, Testolin R (2005) Isolation of (AC) n-microsatellites in Vitis vinifera L. and analysis of genetic background in grapevines under marker assisted selection. Mol Breed 15:11–20CrossRefGoogle Scholar
  19. Doligez A, Bouquet A, Danglot Y, Lahogue F, Riaz S, Meredith CP, Edwards KJ, This P (2002) Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor Appl Genet 105:780–795PubMedCrossRefGoogle Scholar
  20. Doligez A, Adam-Blondon AF, Cipriani G, Di Gaspero G, Laucou V, Merdinoglu D, Meredith CP, Riaz S, Roux C, This P (2006) An integrated SSR map of grapevine based on five mapping populations. Theor Appl Genet 113:369–382PubMedCrossRefGoogle Scholar
  21. Donald TM, Pellerone F, Adam-Blondon AF, Bouquet A, Thomas MR, Dry IB (2002) Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. Theor Appl Genet 104:610–618PubMedCrossRefGoogle Scholar
  22. Doucleff M, Jin Y, Gao F, Riaz S, Krivanek AF, Walker MA (2004) A genetic linkage map of grape, utilizing Vitis rupestris and Vitis arizonica. Theor Appl Genet 109:1178–1187PubMedCrossRefGoogle Scholar
  23. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  24. Fischer BM, Salakhutdinov I, Akkurt M, Eibach R, Edwards KJ, Töpfer R, Zyprian EM (2004) Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet 108:501–515PubMedCrossRefGoogle Scholar
  25. Frisch M, Quint M, Lübberstedt T, Melchinger AE (2004) Duplicate marker loci can result in incorrect locus orders on linkage maps. Theor Appl Genet 109:305–316PubMedCrossRefGoogle Scholar
  26. Grando MS, Bellin D, Edwards KJ, Pozzi C, Stefanini M, Velasco R (2003) Molecular linkage maps of Vitis vinifera L. and Vitis riparia Mchx. Theor Appl Genet 106:1213–1224PubMedGoogle Scholar
  27. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137PubMedGoogle Scholar
  28. Grube RC, Radwanski ER, Jahn M (2000) Comparative genetics of disease resistance within the Solanaceae. Genetics 155:873–887PubMedGoogle Scholar
  29. Jander G (2006) Gene identification and cloning by molecular marker mapping. Methods Mol Biol 323:115–126PubMedGoogle Scholar
  30. Koleda I (1975) Ergebnise von kreuzungen zwischen Vitis amurensis und Vitis vinifera in der zuechtung frostwiederstandfaechiger Reben. Vitis 14:1–5Google Scholar
  31. Kozma P Jr (2000) Winegrape breeding for fungus disease resistance. Acta Hortic 528:505–510Google Scholar
  32. Krivanek AF, Riaz S, Walker MA (2006) Identification and molecular mapping of PdR1, a primary resistance gene to Pierce’s disease in Vitis. Theor Appl Genet 112:1125–1131PubMedCrossRefGoogle Scholar
  33. Lamoureux D, Bernole A, Le Clainche I, Tual S, Thareau V, Paillard S, Legeai F, Dossat C, Wincker P, Oswald M, Merdinoglu D, Vignault C, Delrot S, Caboche M, Chalhoub B, Adam-Blondon A-F (2006) Anchoring of a large set of markers onto a BAC library for the development of a draft physical map of the grapevine genome. Theor Appl Genet 113:344–356PubMedCrossRefGoogle Scholar
  34. Lodhi MA, Daly MJ, Ye GN, Weeden NF, Reisch BI (1995) A molecular marker based linkage map of Vitis. Genome 38:786–794PubMedGoogle Scholar
  35. Lowe KM, Walker MA (2006) Genetic linkage map of the interspecific grape rootstock cross Ramsey (Vitis champinii) × Riparia Gloire (Vitis riparia). Theor Appl Genet 112:1582–1592PubMedCrossRefGoogle Scholar
  36. Madsen LH, Collins NC, Rakwalska M, Backes G, Sandal N, Krusell L, Jensen J, Waterman EH, Jahoor A, Ayliffe M, Pryor AJ, Langridge P, Schulze-Lefert P, Stougaard J (2003) Barley disease resistance gene analogs of the NBS-LRR class: identification and mapping. Theor Appl Genet 269:150–161Google Scholar
  37. McDowell JM, Dhandaydham M, Long TA, Aarts MG, Goff S, Holub EB, Dangl JL (1998) Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell 10:1861–1874PubMedCrossRefGoogle Scholar
  38. Merdinoglu D, Wiedemann-Merdinoglu S, Coste P, Dumas V, Haetty S, Butterlin G, Greif C (2003) Genetic analysis of downy mildew resistance derived from Muscadinia rotundifolia. Acta Hortic 603:451–456Google Scholar
  39. Meyers BC, Shen KA, Rohani P, Gaut BS, Michelmore RW (1998) Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection. Plant Cell 10:1833–1846PubMedCrossRefGoogle Scholar
  40. Mondragon-Palomino M, Meyers BC, Michelmore RW, Gaut BS (2002) Patterns of positive selection in the complete NBS–LRR gene family of Arabidopsis thaliana. Genome Res 12:1305–1315PubMedCrossRefGoogle Scholar
  41. Monosi B, Wisser RJ, Pennill L, Hulbert SH (2004) Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet 109:1434–1447PubMedCrossRefGoogle Scholar
  42. Riaz S, Dangl GS, Edwards KJ, Meredith CP (2004) A microsatellite marker based framework linkage map of Vitis vinifera L. Theor Appl Genet 108:864–872PubMedCrossRefGoogle Scholar
  43. Richly E, Kurth J, Leister D (2002) Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Mol Biol Evol 19:76–84PubMedGoogle Scholar
  44. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, NJ, pp 365–386Google Scholar
  45. Takken FLW, Albrecht M, Tameling WIL (2006) Resistance proteins: molecular switches of plant defence. Curr Opin Plant Biol 9:383–390PubMedCrossRefGoogle Scholar
  46. Tian Y, Fan L, Thurau T, Jung C, Cai D (2004) The absence of TIR-type resistance gene analogues in the sugar beet (Beta vulgaris L.) genome. J Mol Evol 58:40–53PubMedCrossRefGoogle Scholar
  47. Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630PubMedCrossRefGoogle Scholar
  48. Voorips RE (2002) Mapchart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78CrossRefGoogle Scholar
  49. Zhu H, Cannon SB, Young ND, Cook DR (2002) Phylogeny and genomic organization of the TIR and non-TIR NBS-LRR resistance gene family in Medicago truncatula. Mol Plant Microbe Interact 15:529–539PubMedGoogle Scholar
  50. Zyprian E, Akkurt M, Fischer B, Salakhutdinov I, Welter L, Kortekamp A, Eibach R, Töpfer R (2005) Fundamental research meets pratical breeding: genetics of disease resistance in grapevine. In: Proceedings of International Grape Genomics Symposium, St. Louis, USA, 12–14 July 2005Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • G. Di Gaspero
    • 1
    • 2
  • G. Cipriani
    • 1
  • A.-F. Adam-Blondon
    • 3
  • R. Testolin
    • 1
    • 2
  1. 1.Dipartimento di Scienze Agrarie e AmbientaliUniversity of UdineUdineItaly
  2. 2.Istituto di Genomica ApplicataUdineItaly
  3. 3.UMR de Génomique Végétale, INRA-CNRS-UEVEEvry CedexFrance

Personalised recommendations