Theoretical and Applied Genetics

, Volume 114, Issue 6, pp 1105–1116 | Cite as

Single nucleotide polymorphisms in rye (Secale cereale L.): discovery, frequency, and applications for genome mapping and diversity studies

  • R. K. Varshney
  • U. Beier
  • E. K. Khlestkina
  • R. Kota
  • V. Korzun
  • A. Graner
  • A. Börner
Original Paper

Abstract

To elucidate the potential of single nucleotide polymorphism (SNP) markers in rye, a set of 48 barley EST (expressed sequence tag) primer pairs was employed to amplify from DNA prepared from five rye inbred lines. A total of 96 SNPs and 26 indels (insertion–deletions) were defined from the sequences of 14 of the resulting amplicons, giving an estimated frequency of 1 SNP per 58 bp and 1 indel per 214 bp in the rye transcriptome. A mean of 3.4 haplotypes per marker with a mean expected heterozygosity of 0.66 were observed. The nucleotide diversity index (π) was estimated to be in the range 0.0059–0.0530. To improve assay cost-effectiveness, 12 of the 14 SNPs were converted to a cleaved amplified polymorphic sequence (CAPS) format. The resulting 12 SNP loci mapped to chromosomes 1R, 3R, 4R, 5R, 6R, and 7R, at locations consistent with their known map positions in barley. SNP genotypic data were compared with genomic simple sequence repeat (SSR) and EST-derived SSR genotypic data collected from the same templates. This showed a broad equivalence with respect to genetic diversity between these different data types.

Notes

Acknowledgment

The authors thank Dr. Nils Stein, IPK, for his constructive suggestions during the course of study.

Supplementary material

122_2007_504_MOESM1_ESM.doc (172 kb)
Table ESM 1: Details on genomic (gSSR) and EST-derived SSR (eSSR) marker loci used with the SNP markers for comparative assessment of diversity in rye (DOC 172 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560PubMedCrossRefGoogle Scholar
  3. Bednarek PT, Masojc P, Lewandowska R, Myskow B (2003) Saturating rye genetic map with amplified fragment length polymorphism (AFLP) and random amplified polymorphic DNA (RAPD) markers. J Appl Genet 44:21–33PubMedGoogle Scholar
  4. Bundock PC, Christopher JT, Eggler P, Ablett G, Henry RJ, Holton TA (2003) Single nucleotide polymorphisms in cytochrome P450 genes from barley. Theor Appl Genet 106:676–682PubMedGoogle Scholar
  5. Chikmawati T, Ma XF, Ross K, Miftahudin, Gustafson JP (2006) Rye. In: Kole C (ed) The genomes: a series on genome mapping, molecular breeding in plants: cereals and millets, vol 1. Springer, Germany, pp 243–255Google Scholar
  6. Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski AJ (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19PubMedCrossRefGoogle Scholar
  7. Cho RJ, Mindrinos M, Richards DR, Sapolsky RJ, Anderson M, et al (1999) Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nat Genet 23:203–207PubMedCrossRefGoogle Scholar
  8. Devos KM, Gale MD (1993) Extended genetic maps of the homoeologous group-3 chromosomes of wheat, rye and barley. Theor Appl Genet 85:649–652Google Scholar
  9. Devos KM, Atkinson MD, Chinoy CN, Liu CJ, Gale MD (1992) RFLP-based genetic map of the homoeologous group 3 chromosomes of wheat and rye. Theor Appl Genet 83:931–939CrossRefGoogle Scholar
  10. Devos KM, Atkinson MD, Chinoy CN, Francis HA, Harcourt RL, Koebner RMD, Liu CJ, Masojc P, Xie DX, Gale MD (1993) Chromosomal rearrangements in the rye genome relative to that of wheat. Theor Appl Genet 85:673–680Google Scholar
  11. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185PubMedGoogle Scholar
  12. Feltus FA, Wan J, Schulze SR, Estill JC, Jiang N, Paterson AH (2004) An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res 14:1812–1819PubMedCrossRefGoogle Scholar
  13. Gao LF, Jing RL, Hu NX, Li XP, Zhou RH, Chang XP, Tang JF, Ma Zy, Jia JZ (2004) One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. Theor Appl Genet 108:1392–1400PubMedCrossRefGoogle Scholar
  14. Gribskov M, Devereux J, Burgess RR (1984) The codon preference plot: graphic analysis of protein coding sequences and prediction of gene expression. Nucleic Acids Res 12:539–549PubMedCrossRefGoogle Scholar
  15. Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genomics 270:315–323PubMedCrossRefGoogle Scholar
  16. Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–165CrossRefGoogle Scholar
  17. Hackauf B, Wehling P (2002) Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed 121:17–25CrossRefGoogle Scholar
  18. Hamblin MT, Mitchell SE, White GM, Gallego J, Kukatla R, Wing RA, Paterson AH, Kresovich S (2004) Comparative population genetics of the panicoid grasses: sequence polymorphism, linkage disequilibrium and selection in a diverse sample of Sorghum bicolor. Genetics 167:471–483PubMedCrossRefGoogle Scholar
  19. Hartl DL, Clark AG (1997) Principles of population genetics. Sinauer Associates, SunderlandGoogle Scholar
  20. Holton TA, Christopher JT, McClure L, Harker N, Henry RJ (2002) Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat. Mol Breed 9:63–71CrossRefGoogle Scholar
  21. Johnson GC, Esposito L, Barratt BJ, Smith AN, Heward J, Di Genova G, Ueda H, Cordell HJ, Eaves IA, Dudbridge F, Twells RC, Payne F, Hughes W, Nutland S, Stevens H, Carr P, Tuomilehto-Wolf E, Tuomilehto J, Gough SC, Clayton DG, Todd JA (2001) Haplotype tagging for the identification of common disease genes. Nat Genet 29:233–237PubMedCrossRefGoogle Scholar
  22. Kanazin V, Talbert H, See D, Decamp P, Nevo E, Blake T (2002) Discovery and assay of single nucleotide polymorphism in barley (Hordeum vulgare). Plant Mol Biol 48:529–537PubMedCrossRefGoogle Scholar
  23. Khlestkina EK, Than MH, Pestsova EG, Roder MS, Malyshev SV, Korzun V, Börner A (2004) Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags. Theor Appl Genet 109:725–732PubMedCrossRefGoogle Scholar
  24. Khlestkina EK, Than MH, Pestsova EG, Roder MS, Malyshev SV, Korzun V, Börner A (2005) Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags. Erratum. Theor Appl Genet 110:990–991CrossRefGoogle Scholar
  25. Korzun V, Malyshev S, Voylokov AV, Börner A (2001) A genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein, microsatellite and gene loci. Theor Appl Genet 102:709–717CrossRefGoogle Scholar
  26. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175Google Scholar
  27. Kota R, Varshney RK, Thiel T, Dehmer K-J, Graner A (2001) Generation and comparison of EST-derived SSR and SNP markers in barley (Hordeum vulgare L.). Hereditas 135:141–151CrossRefGoogle Scholar
  28. Kota R, Rudd S, Facius A, Kolesov G, Thiel T, Zhang H, Stein N, Mayer K, Graner A (2003) Snipping polymorphisms from large EST collections in barley (Hordeum vulgare L.). Mol Genet Genomics 270:24–33PubMedCrossRefGoogle Scholar
  29. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  30. Madej LJ (1996) Worldwide trends in rye growing and breeding. Vortr Pflanzenzüecht 35:1–6Google Scholar
  31. Malyshev SV, Kartel NA, Voylokov AV, Korzun V, Börner A (2003) Comparative analysis of QTLs affecting agronomical traits in rye and wheat. EWAC Newsl 12:120–122Google Scholar
  32. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  33. Möhring S, Salamini F, Schneider K (2004) Multiplexed, linkage group—specific marker sets for rapid genetic mapping and fingerprinting of sugar beet (Beta vulgaris L.). Mol Breed 14:475–488CrossRefGoogle Scholar
  34. Nasu S, Suzuki J, Ohta R, Hasegawa K, Yui R, Kitazawa N, Monna L, Minobe Y (2002) Search for and analysis of single nucleotide polymorphisms (SNPs) in rice (Oryza sativa, Oryza rufipogon) and establishment of SNP markers. DNA Res 9:163–171PubMedCrossRefGoogle Scholar
  35. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  36. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273PubMedCrossRefGoogle Scholar
  37. Nelson JC, Sorrells ME, Van Deynze AE, Lu YH, Atkinson M, Bernard M, Leroy P, Faris JD, Anderson JA (1995) Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141:721–731PubMedGoogle Scholar
  38. Philipp U, Wehling P, Wricke G (1994) A linkage map of rye. Theor Appl Genet 88:243–248CrossRefGoogle Scholar
  39. Polakova K, Laurie DA, Vaculova K, Ovesna J (2003) Characterization of beta-amylase alleles in 79 barley varieties with pyrosequencing. Plant Mol Biol Rep 21:439–447Google Scholar
  40. Rafalski JA (2002) Application of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100PubMedCrossRefGoogle Scholar
  41. Röder MS, Huang X-Q, Ganal MW (2004) Wheat microsatellites: potential and implications. In: Lörz H, Wenzel G (eds) Biotechnology in agriculture and forestry, molecular marker systems, vol 55. Springer, Heidelberg, pp 255–266Google Scholar
  42. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedGoogle Scholar
  43. Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson JT, Wanamaker SI, Walia H, Rodriguez EM, Hedley PE, Liu H, Morris J, Close TJ, Marshall DF, Waugh R (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genomics 274:515–527PubMedCrossRefGoogle Scholar
  44. Russell J, Booth A, Fuller J, Harrower B, Hedley P, Machray G, Powell W (2004) A comparison of sequence-based polymorphism and haplotype content in transcribed and anonymous regions of the barley genome. Genome 47:389–398PubMedCrossRefGoogle Scholar
  45. Saal B, Wricke G (1999) Development of simple sequence repeat markers in rye (Secale cereale L.). Genome 42:964–972PubMedCrossRefGoogle Scholar
  46. Schneider K, Weisshaar B, Borchardt DC, Salamini F (2001) SNP frequency and allelic haplotype of Beta vulgaris expressed genes. Mol Breed 8:63–74CrossRefGoogle Scholar
  47. Senft P, Wricke G (1996) An extended genetic map of rye (Secale cereale L.). Plant Breed 115:508–510CrossRefGoogle Scholar
  48. Somers DJ, Kirkpatrick R, Moniwa M, Walsh A (2003) Mining single-nucleotide polymorphisms from hexaploid wheat ESTs. Genome 46:431–437PubMedCrossRefGoogle Scholar
  49. Tenaillon MI, Sawkins MC, Long AD, Gaut B, Doebley JF, Brandon S (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. Mays L.) Proc Natl Acad Sci USA 98:9161–9166PubMedCrossRefGoogle Scholar
  50. Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development of cDNA derived microsatellite markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422PubMedGoogle Scholar
  51. Thiel T, Kota R, Grosse I, Stein N, Graner A (2004) SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Res 32(1): e5PubMedCrossRefGoogle Scholar
  52. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal-W —improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  53. Tikhenko ND, Tsvetkova NV, Voylokov AV (2005) Genetic control of embryo lethality in crosses between common wheat and rye. Russ J Genet 41:877–884CrossRefGoogle Scholar
  54. Van K, Hwang E-Y, Young Kim M, Kim Y-H, Cho Y-I, Cregan PB, Lee S-H (2004) Discovery of single nucleotide polymorphisms in soybean using primers designed from ESTs. Euphytica 139:147–157CrossRefGoogle Scholar
  55. Varshney RK, Korzun V, Börner A (2004) Molecular marker maps in cereals: methodology and progress. In: Gupta PK, Varshney RK (eds) Cereal genomics. Kluwer Academic Publishers, The Netherlands, pp 35–82Google Scholar
  56. Varshney RK, Sigmund R, Börner A, Korzun V, Stein N, Sorrells M, Langridge P, Graner A (2005) Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci 168:195–202CrossRefGoogle Scholar
  57. Zhu YL, Song QJ, Hyten DL, van Tassell C, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB (2003) Single-nucleotide polymorphisms in soybean. Genetics 163:1123–1134PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • R. K. Varshney
    • 1
    • 4
  • U. Beier
    • 1
  • E. K. Khlestkina
    • 2
  • R. Kota
    • 1
    • 5
  • V. Korzun
    • 3
  • A. Graner
    • 1
  • A. Börner
    • 1
  1. 1.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
  2. 2.Institute of Cytology and GeneticsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  3. 3.Lochow-Petkus GmbHEinbeckGermany
  4. 4.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)PatancheruIndia
  5. 5.Plant Disease Resistance GroupCSIRO, Plant IndustryCanberraAustralia

Personalised recommendations