Theoretical and Applied Genetics

, Volume 114, Issue 6, pp 1091–1103

A high density barley microsatellite consensus map with 775 SSR loci

  • R. K. Varshney
  • T. C. Marcel
  • L. Ramsay
  • J. Russell
  • M. S. Röder
  • N. Stein
  • R. Waugh
  • P. Langridge
  • R. E. Niks
  • A. Graner
Original Paper

Abstract

A microsatellite or simple sequence repeat (SSR) consensus map of barley was constructed by joining six independent genetic maps based on the mapping populations ‘Igri × Franka’, ‘Steptoe × Morex’, ‘OWBRec × OWBDom’, ‘Lina × Canada Park’, ‘L94 × Vada’ and ‘SusPtrit × Vada’. Segregation data for microsatellite markers from different research groups including SCRI (Bmac, Bmag, EBmac, EBmag, HVGeneName, scsssr), IPK (GBM, GBMS), WUR (GBM), Virginia Polytechnic Institute (HVM), and MPI for Plant Breeding (HVGeneName), generated in above mapping populations, were used in the computer program RECORD to order the markers of the individual linkage data sets. Subsequently, a framework map was constructed for each chromosome by integrating the 496 “bridge markers” common to two or more individual maps with the help of the computer programme JoinMap® 3.0. The final map was calculated by following a “neighbours” map approach. The integrated map contained 775 unique microsatellite loci, from 688 primer pairs, ranging from 93 (6H) to 132 (2H) and with an average of 111 markers per linkage group. The genomic DNA-derived SSR marker loci had a higher polymorphism information content value (average 0.61) as compared to the EST/gene-derived SSR loci (average 0.48). The consensus map spans 1,068 cM providing an average density of one SSR marker every 1.38 cM. Such a high-density consensus SSR map provides barley molecular breeding programmes with a better choice regarding the quality of markers and a higher probability of polymorphic markers in an important chromosomal interval. This map also offers the possibilities of thorough alignment for the (future) physical map and implementation in haplotype diversity studies of barley.

Supplementary material

122_2007_503_MOESM1_ESM.pdf (760 kb)
Table ESM S1: Details of SSR consensus map including marker loci, position, SSR motif, PIC value and developing laboratory of SSR markers (PDF 759 KB)
122_2007_503_MOESM2_ESM.pdf (464 kb)
Table ESM S2: Primer sequences or contact address for corresponding SSR loci mapped on the SSR consensus map (PDF 464 KB)
122_2007_503_MOESM3_ESM.pdf (514 kb)
Table ESM S3: Segregation data of SSR loci in the six barley populations used to construct the high-density barley microsatellite consensus map (PDF 514 KB)

References

  1. Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560PubMedCrossRefGoogle Scholar
  2. Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrels ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186PubMedGoogle Scholar
  3. Becker J, Heun M (1995) Barley microsatellites: allele variation and mapping. Plant Mol Biol 27:835–845PubMedCrossRefGoogle Scholar
  4. Cardle L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R (2000) Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156:847–854PubMedGoogle Scholar
  5. Cone KC, McMullen IV, Bi MD, Davis GL, Yim Y-S, Gardiner JM, Polacco ML, Sanchez-Villeda H, Fang Z, Schroeder SG, Havermann SA, Bowers JE, Paterson AH, Soderlund CA, Engler FW, Wing RA, Coe EH Jr (2002) Genetic, physical, and informatics resources for maize. On the road to an integrated map. Plant Physiol 130:1598–1605PubMedCrossRefGoogle Scholar
  6. Costa JM, Corey A, Hayes PM, Jobet C, Kleinhofs A, Kopisch-Obusch A, Kramer SF, Kudrna D, Riera-Lizarazu M, Li O, Sato K, Szucs P, Toojinda T, Vales MI, Wolfe RI (2001) Molecular mapping of the Oregon Wolfe Barleys: a phenotypically polymorphic doubled-haploid population. Theor Appl Genet 103:415–424CrossRefGoogle Scholar
  7. Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256CrossRefGoogle Scholar
  8. Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–165CrossRefGoogle Scholar
  9. Haanstra JPW, Wye C, Verbakel H, Meijer-Dekens F, van den Berg P, Odinot P, van Heusden AW, Tanskley S, Lindhout P, Peleman J (1999) An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicon esculentum × L. pennellii F2 populations. Theor Appl Genet 99:254–271CrossRefGoogle Scholar
  10. Isidore E, van Os H, Andrzejewski S, Bakker J, Barrena I, Bryan GJ, Caromel B, van Eck HJ, Ghareeb B, de Jong W, van Koert P, Lefebvre V, Milbourne D, Ritter E, Rouppe van der Voort JNAM, Rousselle-Bourgeois F, van Vliet J, Waugh R (2003) Toward a marker-dense meiotic map of the potato genome: lessons from linkage group I. Genetics 165:2107–2116PubMedGoogle Scholar
  11. Ivandic V, Thomas WTB, Nevo E, Zhang Z, Forster BP (2003) Associations of simple sequence repeats with quantitative trait variation including biotic and abiotic stress tolerance in Hordeum spontaneum. Plant Breed 122:300–304CrossRefGoogle Scholar
  12. Jafary H, Szabo LJ, Niks RE (2006) Innate nonhost immunity in barley to different heterologous rust fungi is controlled by sets of resistance genes with different and overlapping specificities. Mol Plant Microbe Interact 19:1270–1279PubMedGoogle Scholar
  13. Jansen J, de Jong AG, van Ooijen JW (2001) Constructing dense genetic linkage maps. Theor Appl Genet 102:1113–1122CrossRefGoogle Scholar
  14. Karakousis A, Gustafson JP, Chalmers KJ, Barr AR, Langridge P (2003) A consensus map of barley integrating SSR, RFLP, and AFLP markers. Aust J Agric Res 54:1173–1185CrossRefGoogle Scholar
  15. Kleinhofs A, Graner A (2001) An integrated map of the barley genome. In: Phillips RL, Vasil IK (eds) DNA markers in plants, Kluwer, Dordrecht, pp 187–199Google Scholar
  16. Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Franckowiak JD, Hoffman D, Skadsen R, Steffenson BJ (1993) A molecular, isozyme and morphological map of barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712CrossRefGoogle Scholar
  17. Künzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412PubMedGoogle Scholar
  18. Langridge P, Chalmers K (2004) The principle: identification and application of molecular markers. In: Lörz H, Wenzel G (eds) Biotechnology in agriculture and forestry, vol 55. Molecular markers systems. Springer, Heidelberg, pp 3–22Google Scholar
  19. Langridge P, Karakousis A, Collins N, Kretschmer J, Manning S (1995) A consensus linkage map of barley. Mol Breed 1:389–395CrossRefGoogle Scholar
  20. Li JZ, Sjakste TG, Röder MS, Ganal MW (2003) Development and genetic mapping of 127 new microsatellite markers in barley. Theor Appl Genet 107:1021–1027PubMedCrossRefGoogle Scholar
  21. Liu ZW, Biyashev RM, Saghai Maroof MA (1996) Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theor Appl Genet 93:869–876Google Scholar
  22. Malysheva-Otto LV, Ganal MW, Röder MS (2006) Analysis of molecular diversity, population structure and linkage disequilibrium in a worldwide survey of cultivated barley germplasm (Hordeum vulgare L.). BMC Genet 7:6PubMedCrossRefGoogle Scholar
  23. Marcel TC, Varshney RK, Barbieri M, Jafary H, de Kock MJD, Graner A, Niks RE (2007) A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theor Appl Genet 114:487–500PubMedCrossRefGoogle Scholar
  24. Matus IA, Hayes PM (2002) Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome 45:1095–1106PubMedCrossRefGoogle Scholar
  25. McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207PubMedCrossRefGoogle Scholar
  26. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200PubMedCrossRefGoogle Scholar
  27. Phillips RL, Vasil IK (2001) DNA markers in plants. Kluwer, DordrechtGoogle Scholar
  28. Pillen K, Binder A, Kreuzkam B, Ramsay L, Waugh R, Förster J, Leon J (2000) Mapping new EMBL-derived barley microsatellites and their use in differentiating German barley cultivars. Theor Appl Genet 101:652–660CrossRefGoogle Scholar
  29. Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222Google Scholar
  30. Qi X, Stam P, Lindhout P (1996) Comparison and integration of four barley genetic maps. Genome 39:379–394PubMedGoogle Scholar
  31. Qi X, Stam P, Lindhout P (1998) Use of locus-specific AFLP markers to construct a high-density molecular map in barley. Theor Appl Genet 96:376–384CrossRefGoogle Scholar
  32. Qi X, Pittaway TS, Lindup S, Liu H, Waterman E, Padi FK, Hash CT, Zhu J, Gale MD, Devos KM (2004) An integrated genetic map and a new set of simple sequence repeat markers for pearl millet, Pennisetum glaucum. Theor Appl Genet 109:1485–1493PubMedCrossRefGoogle Scholar
  33. Ramsay L, Macaulay M, Ivanissevich DS, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005PubMedGoogle Scholar
  34. Ramsay L, Russell J, Macaulay M, Booth A, Thomas WTB, Waugh R (2004) Variation shown by molecular markers in barley: genomic and genetic constraints. Aspects Appl Biol 72:147–154Google Scholar
  35. Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson JT, Wanamaker SI, Walia H, Rodriguez EM, Hedley PE, Liu H, Morris J, Close TJ, Marshall DF, Waugh R (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Gen Genomics 274:515–527CrossRefGoogle Scholar
  36. Saghai Maroof MA, Biyashev RM, Yang GP, Zhang Q, Allard RW (1994) Extraordinarily polymorphic microsatellite DNA in barley: Species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci USA 91:5466–5470PubMedCrossRefGoogle Scholar
  37. Sharopova N, McMullen MD, Schultz L, Schroeder S, Sanchez-Villeda H, Gardiner J, Bergstrom D, Houchins K, Melia-Hancock S, Musket T, Duru N, Polacco M, Edwards K, Ruff T, Register JC, Brouwer C, Thompson R, Velasco R, Chin E, Lee M, Woodman-Clikeman W, Long MJ, Liscum E, Cone K, Davis G, Coe EH Jr (2002) Development and mapping of SSR markers for maize. Plant Mol Biol 48:463–481PubMedCrossRefGoogle Scholar
  38. Sjakste TG, Rashal I, Röder MS (2003) Inheritance of microsatellite alleles in pedigrees of Latvian barley varieties and related European ancestors. Theor Appl Genet 106:539–549PubMedGoogle Scholar
  39. Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114PubMedCrossRefGoogle Scholar
  40. Stein N, Graner A (2004) Map-based gene isolation in cereal genomes. In: Gupta PK, Varshney RK (eds) Cereal genomics, Kluwer, Dordrecht, pp 331–360Google Scholar
  41. Struss P, Plieske J (1998) The use of microsatellite markers for detection of genetic diversity in barley populations. Theor Appl Genet 97:308–315CrossRefGoogle Scholar
  42. Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development of cDNA derived microsatellite markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422PubMedGoogle Scholar
  43. Van Ooijen JW, Voorrips RE (2001) JoinMap® version 3.0, software for the calculation of genetic linkage maps. Plant Research International, WageningenGoogle Scholar
  44. Van Os H, Stam P, Visser RGF, van Eck HJ (2005a) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112:30–40PubMedCrossRefGoogle Scholar
  45. Van Os H, Stam P, Visser RGF, van Eck HJ (2005b) SMOOTH: a statistical method for successful removal of genotyping errors from high-density genetic linkage data. Theor Appl Genet 112:187–194PubMedCrossRefGoogle Scholar
  46. Van Os H, Andrzejewski S, Bakker E, Barrena I, Bryan GJ, Caromel B, Ghareeb B, Isidore E, de Jong W, van Koert P, Lefebvre V, Milbourne D, Ritter E, Rouppe van der Voort JNAM, Rousselle-Bourgeois F, van Vliet J, Waugh R, Bakker J, Visser RGF, van Eck HJ (2006) A 10,000 marker ultra-dense genetic recombination map as a new tool for anchoring a physical map and fast gene cloning in potato. Genetics 173:1075–1087PubMedCrossRefGoogle Scholar
  47. Varshney RK, Prasad M, Graner A (2004) Molecular marker maps of barley: a resource for intra- and interspecific genomics. In: Lörz H, Wenzel G (eds) Biotechnology in agriculture and forestry, vol 55. Molecular markers systems. Springer, Heidelberg, pp 229–243Google Scholar
  48. Varshney RK, Graner A, Sorrells ME (2005a) Genic microsatellite markers in plants: features and applications. Trends Biotech 23:48–55CrossRefGoogle Scholar
  49. Varshney RK, Sigmund R, Borner A, Korzun V, Stein N, Sorrells ME, Langridge P, Graner A (2005b) Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci 168:195–202CrossRefGoogle Scholar
  50. Varshney RK, Grosse I, Hähnel U, Siefken R, Prasad M, Stein N, Langridge P, Altschmied L, Graner A (2006a) Genetic mapping and BAC assignment of EST-derived SSR markers proves non-uniform distribution of genes in the barley genome. Theor Appl Genet 113:239–250PubMedCrossRefGoogle Scholar
  51. Varshney RK, Hoisington DA, Tyagi AK (2006b) Advances in cereal genomics and applications in crop breeding. Trends Biotech 24:490–499CrossRefGoogle Scholar
  52. Vromans J, Stam P, van Eck HJ (2007) The construction of an integrated linkage map of flax (Linum usitatissimum L.) using conventional and novel mapping software. Theor Appl Genet (accepted)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • R. K. Varshney
    • 1
    • 2
  • T. C. Marcel
    • 3
  • L. Ramsay
    • 4
  • J. Russell
    • 4
  • M. S. Röder
    • 1
  • N. Stein
    • 1
  • R. Waugh
    • 4
  • P. Langridge
    • 5
  • R. E. Niks
    • 3
  • A. Graner
    • 1
  1. 1.Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
  2. 2.Applied Genomics LaboratoryInternational Crops Research Centre for the Semi-Arid Tropics (ICRISAT) PatancheruIndia
  3. 3.Laboratory of Plant Breeding, Graduate School for Experimental Plant SciencesWageningen UniversityWageningenThe Netherlands
  4. 4.Genetics, Scottish Crop Research Institute (SCRI)DundeeUK
  5. 5.Australian Centre for Plant Functional Genomics (ACPFG)University of AdelaideGlen OsmondSouth Australia

Personalised recommendations