Theoretical and Applied Genetics

, Volume 114, Issue 5, pp 823–839 | Cite as

A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics

  • Nils Stein
  • Manoj Prasad
  • Uwe Scholz
  • Thomas Thiel
  • Hangning Zhang
  • Markus Wolf
  • Raja Kota
  • Rajeev K. Varshney
  • Dragan Perovic
  • Ivo Grosse
  • Andreas Graner
Original Paper


An integrated barley transcript map (consensus map) comprising 1,032 expressed sequence tag (EST)-based markers (total 1,055 loci: 607 RFLP, 190 SSR, and 258 SNP), and 200 anchor markers from previously published data, has been generated by mapping in three doubled haploid (DH) populations. Between 107 and 179 EST-based markers were allocated to the seven individual barley linkage groups. The map covers 1118.3 cM with individual linkage groups ranging from 130 cM (chromosome 4H) to 199 cM (chromosome 3H), yielding an average marker interval distance of 0.9 cM. 475 EST-based markers showed a syntenic organisation to known colinear linkage groups of the rice genome, providing an extended insight into the status of barley/rice genome colinearity as well as ancient genome duplications predating the divergence of rice and barley. The presented barley transcript map is a valuable resource for targeted marker saturation and identification of candidate genes at agronomically important loci. It provides new anchor points for detailed studies in comparative grass genomics and will support future attempts towards the integration of genetic and physical mapping information.


Double Haploid Rice Genome Electronic Supplementary Material Table Rice Chromosome Marker Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge P. Hayes for providing the SM and OWB DH-lines, A. Seitz, M. Soffner, E. Graner for developing database support for marker data management, A. Winter for help in statistical analyses, C. Kuenzel, U. Beier, J. Pohl, S. Stegmann, M. Kretschmann, J. Perovic for excellent technical assistance, W. Weschke, V. Radchuk, E. Potokina for providing cDNA libraries for EST sequencing, and S. Meyer, B. Kersten from RZPD, Berlin ( for updating NCBI Genebank EST-accessions with marker information. This work was supported by grants of the German Ministry of Education and Research (BMBF: FKZ 0312271A, 0312271C, 0312278C, 0312706A), GRDC Australia and the state of Saxony-Anhalt.

Supplementary material

122_2006_480_MOESM1_ESM.xls (276 kb)
ESM Table 1: Summary of EST-based markers (XLS 277 kb)
122_2006_480_MOESM2_ESM.doc (334 kb)
ESM Table 2: Summary of included anchor / reference markers (DOC 334 kb)
122_2006_480_MOESM3_ESM.doc (35 kb)
ESM Table 3: EST based RFLP-marker detecting multiple loci (DOC 35 kb)
122_2006_480_MOESM4_ESM.doc (58 kb)
ESM Table 4: EST / TC mapped by different marker systems in multiple populations (DOC 58 kb)
122_2006_480_MOESM5_ESM.doc (32 kb)
ESM Table 5: Distribution of anchor marker loci over the seven barley linkage groups (DOC 32 kb)
122_2006_480_MOESM6_ESM.doc (163 kb)
ESM Table 6: Summary of anchor markers (DOC 163 kb)
122_2006_480_MOESM7_ESM.doc (34 kb)
ESM Table 7: Regions of distorted segregation in the individual mapping populations (DOC 34 kb)
122_2006_480_MOESM8_ESM.xls (308 kb)
ESM Table 8: Summary of 1st to 3rd BLASTN match of barley EST to the rice genome (XLS 309 kb)
122_2006_480_MOESM9_ESM.tif (1.3 mb)
ESM Figure 1: Distribution along the barley consensus genetic map of mapped barley ESTs with or without sequence homology to the rice genome.Barley ESTs underlying GB and cMWG markers of this study were classified as showing homology or no homology to the rice genome (BLASTN E-value ≤ 1E-10 or > 1E-10, respectively). Based on their genetic postion they were grouped into bins of 20 cM (y-axis = number of ESTs, x-axis = genetic length given in cM). The distribution of ESTs without rice homology (upper panel of the histogram) was plotted against the distribution of ESTs showing homology to rice (lower panel of the histogram). The distribution of both classes of ESTs was following a very similar pattern along all chromosomes – no significantly different clustering to specific chromosomal regions could be observed. (TIF 1.26 mb)


  1. Ahn S, Tanksley SD (1993) Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci USA 90:7980–7984PubMedCrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  3. Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J 40:143–150PubMedCrossRefGoogle Scholar
  4. Chen MS, Presting G, Barbazuk WB, Goicoechea JL, Blackmon B, Fang FC, Kim H, Frisch D, Yu YS, Sun SH, Higingbottom S, Phimphilai J, Phimphilai D, Thurmond S, Gaudette B, Li P, Liu JD, Hatfield J, Main D, Farrar K, Henderson C, Barnett L, Costa R, Williams B, Walser S, Atkins M, Hall C, Budiman MA, Tomkins JP, Luo MZ, Bancroft I, Salse J, Regad F, Mohapatra T, Singh NK, Tyagi AK, Soderlund C, Dean RA, Wing RA (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14:537–545PubMedCrossRefGoogle Scholar
  5. Cho S, Garvin DF, Muehlbauer GJ (2006) Transcriptome analysis and physical mapping of barley genes in wheat–barley chromosome addition lines. Genetics 172:1277–1285PubMedCrossRefGoogle Scholar
  6. Costa JM, Corey A, Hayes PM, Jobet C, Kleinhofs A, Kopisch-Obusch A, Kramer SF, Kudrna D, Li M, Riera-Lizarazu O, Sato K, Szucs P, Toojinda T, Vales MI, Wolfe RI (2001) Molecular mapping of the Oregon Wolfe Barleys: a phenotypically polymorphic doubled-haploid population. Theor Appl Genet 103:415–424CrossRefGoogle Scholar
  7. Davis GL, McMullen MD, Baysdorfer C, Musket T, Grant D, Staebell M, Xu G, Polacco M, Koster L, Melia-Hancock S, Houchins K, Chao S, Coe EH Jr (1999) A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged Sites (ESTs) in a 1736-locus map. Genetics 152:1137–1172PubMedGoogle Scholar
  8. Devos KM (2005) Updating the ‘crop circle’. Curr Opin Plant Biol 8:155–162PubMedCrossRefGoogle Scholar
  9. Devos KM, Gale MD (2000) Genome relationships: the grass model in current research. Plant Cell 12:637–646PubMedCrossRefGoogle Scholar
  10. Doligez A, Adam-Blondon A, Cipriani G, Gaspero GD, Laucou V, Merdinoglu D, Meredith C, Riaz S, Roux C, This P (2006) An integrated SSR map of grapevine based on five mapping populations. Theor Appl Genet 113:369–382PubMedCrossRefGoogle Scholar
  11. Flavell RB, Bennett MD, Smith JB, Smith DB (1974) Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet 12:257–269PubMedCrossRefGoogle Scholar
  12. Gaut BS (2002) Evolutionary dynamics of grass genomes. New Phytol 154:15–28CrossRefGoogle Scholar
  13. Gill K, Lubbers E, Gill B, Raupp W, Cox T (1991) A genetic linkage map of Triticum tauschii (DD) and its relationship to the D genome of bread wheat (AABBDD). Genome 34:362–374Google Scholar
  14. Giordano M, Oefner PJ, Underhill PA, Cavalli Sforza LL, Tosi R, Richiardi PM (1999) Identification by denaturing high-performance liquid chromatography of numerous polymorphisms in a candidate region for multiple sclerosis susceptibility. Genomics 56:247–253PubMedCrossRefGoogle Scholar
  15. Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256CrossRefGoogle Scholar
  16. Guyot R, Keller B (2004) Ancestral genome duplication in rice. Genome 47:610–614PubMedCrossRefGoogle Scholar
  17. Hackauf B, Wehling P (2002) Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed 121:17–25CrossRefGoogle Scholar
  18. Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush GS, Sasaki T (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148:479–494PubMedGoogle Scholar
  19. Heun M, Kennedy A, Anderson J, Lapitan N, Sorrels M, Tanksley S (1991) Construction of restriction fragment length polymorphism map of barley (Hordeum vulgare). Genome 34:437–447Google Scholar
  20. Hori K, Kobayashi T, Shimizu A, Sato K, Takeda K, Kawasaki S (2003) Efficient construction of high-density linkage map and its application to QTL analysis in barley. Theor Appl Genet 107:806–813PubMedCrossRefGoogle Scholar
  21. Hulbert SH, Richter TE, Axtell JD, Bennetzen JL (1990) Genetic mapping and characterization of Sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci USA 87:4251–4255PubMedCrossRefGoogle Scholar
  22. Isidore E, Scherrer B, Bellec A, Budin K, Faivre-Rampant P, Waugh R, Keller B, Caboche M, Feuillet C, Chalhoub B (2005) Direct targeting and rapid isolation of BAC clones spanning a defined chromosome region. Funct Integr Gen 5:97–103CrossRefGoogle Scholar
  23. Kleinhofs A, Graner A (2001) An integrated map of the barley genome. In: Vasil IK (ed) DNA markers in plants. Kluwer, Dordrecht, pp 187–199Google Scholar
  24. Kleinhofs A, Kilian A, Saghai Maroof M, Biyashev R, Hayes P, Chen F, Lapitan N, Fenwick A, Blake T, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp S, Liu B, Sorrells M, Heun M, Franckowiak J, Hoffman D, Skadsen R, Steffenson B (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–713CrossRefGoogle Scholar
  25. Kosambi D (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175Google Scholar
  26. Kota R, Varshney RK, Thiel T, Dehmer KJ, Graner A (2001a) Generation and comparison of EST-derived SSRs and SNPs in barley (Hordeum vulgare L.). Hereditas 135:145–151CrossRefGoogle Scholar
  27. Kota R, Wolf M, Michalek W, Graner A (2001b) Application of denaturing high-performance liquid chromatography for mapping of single nucleotide polymorphisms in barley (Hordeum vulgare L.). Genome 44:523–528CrossRefGoogle Scholar
  28. Kota R, Rudd S, Facius A, Kolesov G, Thiel T, Zhang H, Stein N, Mayer K, Graner A (2003) Snipping polymorphisms from large EST collections in barley (Hordeum vulgare L.). Mol Genet Genomics 270:24–33PubMedCrossRefGoogle Scholar
  29. Kuenne C, Lange M, Funke T, Miehe H, Thiel T, Grosse I, Scholz U (2005) CR-EST: a resource for crop ESTs. Nucleic Acids Res 33:D619–D621CrossRefGoogle Scholar
  30. Kuenzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412Google Scholar
  31. Kurata N, Umehara Y, Tanoue H, Sasaki T (1997) Physical mapping of the rice genome with YAC clones. Plant Mol Biol 35:101–113PubMedCrossRefGoogle Scholar
  32. Langridge P, Karakousis A, Collins N, Kretschmer J, Manning S (1995) A consensus linkage map of barley. Mol Breed 1:389–395CrossRefGoogle Scholar
  33. Lundqvist U, Franckowiak J, Konishi T (1996) New and revised descriptions of barley genes. Barley Genet Newsl 26:22–43Google Scholar
  34. Maliepaard C, Alston F, van Arkel G, Brown L, Chevreau E, Dunemann F, Evans K, Gardiner S, Guilford P, van Heusden A, Janse J, Laurens F, Lynn J, Manganaris A, den Nijs A, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh J, Vrielink-van Ginkel M, King G (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73CrossRefGoogle Scholar
  35. Manly K, Cudmore R, Meer J (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932PubMedCrossRefGoogle Scholar
  36. Michalek W, Weschke W, Pleissner K, Graner A (2002) EST analysis in barley defines a unigene set comprising 4,000 genes. Theor Appl Genet 104:97–103PubMedCrossRefGoogle Scholar
  37. Moore G, Devos KM, Wang Z, Gale MD (1995) Grasses, line up and form a circle. Curr Biol 5:737–739PubMedCrossRefGoogle Scholar
  38. Nasuda S, Kikkawa Y, Ashida T, Islam AKMR, Sato K, Endo TR (2005) Chromosomal assignment and deletion mapping of barley EST markers. Gen Genet Syst 80:357–366CrossRefGoogle Scholar
  39. Pillen K, Binder A, Kreuzkam B, Ramsay L, Waugh R, Förster J, Leon J (2000) Mapping new EMBL-derived barley microsatellites and their use in differentiating German barley cultivars. Theor Appl Genet 101:652–660CrossRefGoogle Scholar
  40. Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222Google Scholar
  41. Qi L, Echalier B, Friebe B, Gill B (2003) Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct Integr Genomics 3:39–55PubMedGoogle Scholar
  42. Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD, Akhunov ED, Dvorak J, Linkiewicz AM, Ratnasiri A, Dubcovsky J, Bermudez-Kandianis CE, Greene RA, Kantety R, La Rota CM, Munkvold JD, Sorrells SF, Sorrells ME, Dilbirligi M, Sidhu D, Erayman M, Randhawa HS, Sandhu D, Bondareva SN, Gill KS, Mahmoud AA, Ma XF, Miftahudin, Gustafson JP, Conley EJ, Nduati V, Gonzalez-Hernandez JL, Anderson JA, Peng JH, Lapitan NLV, Hossain KG, Kalavacharla V, Kianian SF, Pathan MS, Zhang DS, Nguyen HT, Choi DW, Fenton RD, Close TJ, McGuire PE, Qualset CO, Gill BS (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712PubMedCrossRefGoogle Scholar
  43. Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100PubMedCrossRefGoogle Scholar
  44. Ramsay L, Macaulay M, degli Ivanissevich S, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005PubMedGoogle Scholar
  45. Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson J, Wanamaker S, Walia H, Rodriguez E, Hedley P, Liu H, Morris J, Close T, Marshall D, Waugh R (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Gen Genomics 274:515–527CrossRefGoogle Scholar
  46. Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Miftahudin, Mahmoud A, Ma X, Gustafson PJ, Qi LL, Echalier B, Gill BS, Matthews DE, Lazo GR, Chao S, Anderson OD, Edwards H, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Zhang D, Nguyen HT, Peng J, Lapitan NLV, Gonzalez-Hernandez JL, Anderson JA, Hossain K, Kalavacharla V, Kianian SF, Choi D-W, Close TJ, Dilbirligi M, Gill KS, Steber C, Walker-Simmons MK, McGuire PE, Qualset CO (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827PubMedGoogle Scholar
  47. Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17:6463–6471PubMedCrossRefGoogle Scholar
  48. Thiel T, Michalek W, Varshney R, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422PubMedGoogle Scholar
  49. Valarik M, Linkiewicz A, Dubcovsky J (2006) A microcolinearity study at the earliness per se gene Eps-A(m)1 region reveals an ancient duplication that preceded the wheat-rice divergence. Theor Appl Genet 112:945–957PubMedCrossRefGoogle Scholar
  50. Van Deynze AE, Nelson JC, Yglesias ES, Harrington SE, Braga DP, McCouch SR, Sorrells ME (1995) Comparative mapping in grasses. Wheat relationships. Mol Gen Genet 248:744–754PubMedCrossRefGoogle Scholar
  51. Varshney RK, Prasad M, Graner A (2004) Molecular marker maps of barley: a resource for intra- and interspecific genomics. In: Lörz H, Wenzel G (eds) Molecular marker systems. Springer, Berlin Heidelberg New York, pp 229–243Google Scholar
  52. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55PubMedCrossRefGoogle Scholar
  53. Varshney RK, Grosse I, Haehnel U, Siefken R, Prasad M, Stein N, Langridge P, Altschmied L, Graner A (2006) Genetic mapping and BAC assignment of EST-derived SSR markers shows non-uniform distribution of genes in the barley genome. Theor Appl Genet 113:239–250PubMedCrossRefGoogle Scholar
  54. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedCrossRefGoogle Scholar
  55. Wang DG, Fan J-B, Siao C-J, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris MS, Shen N, Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson TJ, Lipshutz R, Chee M, Lander ES (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280:1077–1082PubMedCrossRefGoogle Scholar
  56. Wang X, Shi X, Hao B, Ge S, Luo J (2005) Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165:937–946PubMedCrossRefGoogle Scholar
  57. Waugh R, Bonar N, Baird E, Thomas B, Graner A, Hayes P, Powell W (1997) Homology of AFLP products in three mapping populations of barley. Mol Gen Genet 255:311–321PubMedCrossRefGoogle Scholar
  58. Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920PubMedCrossRefGoogle Scholar
  59. Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesná J, Cakir M, Poulsen D, Wang J, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206PubMedCrossRefGoogle Scholar
  60. Weyen J, Bauer E, Graner A, Friedt W, Ordon F (1996) RAPD mapping of the distal portion of chromosome 3 of barley including the BaMMV/BaYMV resistance gene ym4. Plant Breed 115:285–287CrossRefGoogle Scholar
  61. Wu J, Maehara T, Shimokawa T, Yamamoto S, Harada C, Takazaki Y, Ono N, Mukai Y, Koike K, Yazaki J, Fujii F, Shomura A, Ando T, Kono I, Waki K, Yamamoto K, Yano M, Matsumoto T, Sasaki T (2002) A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell 14:525–535PubMedCrossRefGoogle Scholar
  62. Yu Y, Tomkins J, Waugh R, Frisch D, Kudrna D, Kleinhofs A, Brueggeman R, Muehlbauer G, Wise R, Wing R (2000) A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theor Appl Genet 101:1093–1099CrossRefGoogle Scholar
  63. Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C, Zhang J, Zhang Y, Li R, Xu Z, Li S, Li X, Zheng Hqa2`, Cong L, Lin L, Yin J, Geng J, Li G, Shi J, Liu J, Lv H, Li J, Wang J, Deng Y, Ran L, Shi X, Wang X, Wu Q, Li C, Ren X, Wang J, Wang X, Li D, Liu D, Zhang X, Ji Z, Zhao W, Sun Y, Zhang Z, Bao J, Han Y, Dong L, Ji J, Chen P, Wu S, Liu J, Xiao Y, Bu D, Tan J, Yang L, Ye C, Zhang J, Xu J, Zhou Y, Yu Y, Zhang B, Zhuang S, Wei H, Liu B, Lei M, Yu H, Li Y, Xu H, Wei S, He X, Fang L, Zhang Z, Zhang Y, Huang X, Su Z, Tong W, Li J, Tong Z, Li S, Ye J, Wang L, Fang L, Lei T, Chen C, Chen H, Xu Z, Li H, Huang H, Zhang F, Xu H, Li N, Zhao C, Li S, Dong L, Huang Y, Li L, Xi Y, Qi Q, Li W, Zhang B, Hu W, Zhang Y, Tian X, Jiao Y, Liang X, Jin J, Gao L, Zheng W, Hao B, Liu S, Wang W, Yuan L, Cao M, McDermott J, Samudrala R, Wang J, Wong GK-S, Yang H (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38PubMedCrossRefGoogle Scholar
  64. Zhang H, Sreenivasulu N, Weschke W, Stein N, Rudd S, Radchuk V, Potokina E, Scholz U, Schweizer P, Zierold U, Langridge P, Varshney RK, Wobus U, Graner A (2004) Large-scale analysis of the barley transcriptome based on expressed sequence tags. Plant J 40:276–290PubMedCrossRefGoogle Scholar
  65. Zhao Q, Zhang Y, Cheng Z, Chen M, Wang S, Feng Q, Huang Y, Li Y, Tang Y, Zhou B, Chen Z, Yu S, Zhu J, Hu X, Mu J, Ying K, Hao P, Zhang L, Lu Y, Zhang LS, Liu Y, Yu Z, Fan D, Weng Q, Chen L, Lu T, Liu X, Jia P, Sun T, Wu Y, Zhang Y, Lu Y, Li C, Wang R, Lei H, Li T, Hu H, Wu M, Zhang R, Guan J, Zhu J, Fu G, Gu M, Hong G, Xue Y, Wing R, Jiang J, Han B (2002) A fine physical map of the rice chromosome 4. Genome Res 12:817–823PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Nils Stein
    • 1
  • Manoj Prasad
    • 1
    • 2
  • Uwe Scholz
    • 1
  • Thomas Thiel
    • 1
  • Hangning Zhang
    • 1
    • 3
  • Markus Wolf
    • 1
    • 4
  • Raja Kota
    • 1
    • 5
  • Rajeev K. Varshney
    • 1
    • 6
  • Dragan Perovic
    • 1
    • 7
  • Ivo Grosse
    • 1
  • Andreas Graner
    • 1
  1. 1.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
  2. 2.National Centre for Plant Genome Research (NCPGR)New DelhiIndia
  3. 3.Agronomy DepartmentUniversity of FloridaGainesvilleUSA
  4. 4.Trait GeneticsGaterslebenGermany
  5. 5.Plant Disease Resistance GroupCSIRO—Plant CanberraAustralia
  6. 6.International Crops Research Institute for Semi Arid Tropics (ICRISAT)PatancheruIndia
  7. 7.Federal Centre for Breeding Research on Cultivated PlantsInstitute of Epidemiology and Resistance ResourcesAscherslebenGermany

Personalised recommendations