Theoretical and Applied Genetics

, Volume 114, Issue 4, pp 609–618 | Cite as

Simple sequence repeats reveal uneven distribution of genetic diversity in chloroplast genomes of Brassica oleracea L. and (= 9) wild relatives

  • C. J. Allender
  • J. Allainguillaume
  • J. Lynn
  • G. J. King
Original Paper


Diversity in the chloroplast genome of 171 accessions representing the Brassica ‘C’ (= 9) genome, including domesticated and wild B. oleracea and nine inter-fertile related wild species, was investigated using six chloroplast SSR (microsatellite) markers. The lack of diversity detected among 105 cultivated and wild accessions of B. oleracea contrasted starkly with that found within its wild relatives. The vast majority of B. oleracea accessions shared a single haplotype, whereas as many as six haplotypes were detected in two wild species, B. villosa Biv. and B. cretica Lam.. The SSRs proved to be highly polymorphic across haplotypes, with calculated genetic diversity values (H) of 0.23–0.87. In total, 23 different haplotypes were detected in C genome species, with an additional five haplotypes detected in B. rapa L. (A genome = 10) and another in B. nigra L. (B genome, = 8). The low chloroplast diversity of B. oleracea is not suggestive of multiple domestication events. The predominant B. oleracea haplotype was also common in B. incana Ten. and present in low frequencies in B. villosa, B. macrocarpa Guss, B. rupestris Raf. and B. cretica. The chloroplast SSRs reveal a wealth of diversity within wild Brassica species that will facilitate further evolutionary and phylogeographic studies of this important crop genus.


Chloroplast Genome Brassica Species Wild Accession Genome Species Network Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by the UK Biotechnology & Biological Sciences Research Council and the Natural Environment Research Council. The authors would like to thank Dave Pink, Dave Astley and Graham Teakle for advice and provision of accessions and Neale Grant, Sandy McClement and Jason Pole for DNA extraction and plant husbandry.

Supplementary material

122_2006_461_MOESM1_ESM.doc (371 kb)
Supplementary material


  1. Abel S, Mollers C, Becker HC (2005) Development of synthetic Brassica napus lines for the analysis of “fixed heterosis” in allopolyploid plants. Euphytica 146:157–163CrossRefGoogle Scholar
  2. Avise JC (1994) Molecular markers, natural history and evolution. Chapman and Hall, New YorkGoogle Scholar
  3. Chacon MI, Pickersgill B, Debouck DG (2005) Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theor Appl Genet 110:432–444CrossRefGoogle Scholar
  4. Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631–1638PubMedCrossRefGoogle Scholar
  5. Geraci A, Chèvre A-M, Divaret I, Eber F, Raimondo FM (2004) Isozyme analysis of genetic diversity in wild Sicilian populations of Brassica sect Brassica in view of genetic resources management. Genet Resour Crop Evol l51:137–146CrossRefGoogle Scholar
  6. Gladis T, Hammer K (2001) Nomenclatural notes on the Brassica oleracea-group. Genet Resour Crop Evol 48:7–11CrossRefGoogle Scholar
  7. Gómez-Campo C (1999) Taxonomy. In: Biology of Brassica Coenospecies. Elsevier, AmsterdamGoogle Scholar
  8. Gómez-Campo C, Prakash S (1999) Origin and domestication. In Biology of Brassica Coenospecies. Elsevier, AmsterdamGoogle Scholar
  9. Harberd DJ (1976) Cytotaxonomic studies of Brassica and related genera. In: Vaughan JG, Macleod AJ, Jones BMG (eds) The biology and chemistry of the cruciferae. Academic, LondonGoogle Scholar
  10. Inaba R, Nishio T (2002) Phylogenetic analysis of the Brassiceae based on the nucleotide sequences of the S-locus related gene SLR1. Theor Appl Genet 105:1159–1165PubMedCrossRefGoogle Scholar
  11. Kianian SF, Quiros CF (1992) Trait inheritance, fertility and genomic relationships of some n = 9 Brassica species. Genet Resour Crop Evol 39:165–175Google Scholar
  12. Lannér C (1998) Relationships of wild Brassica species with chromosome number 2= 18, based on the comparison of the DNA sequence of the chloroplast intergenic region between trnL (UAA) and trnF (GAA). Can J Bot 76:228–237CrossRefGoogle Scholar
  13. Lázaro A, Aguinagalde I (1998a) Genetic diversity in Brassica oleracea L. (Cruciferae) and wild relatives (2n = 18) using RAPD markers. Ann Bot 82:829–833CrossRefGoogle Scholar
  14. Lázaro A, Aguinagalde I (1998b) Genetic diversity in Brassica oleracea L. (Cruciferae) and wild relatives (2n = 18) using isozymes. Ann Bot 82:821–828CrossRefGoogle Scholar
  15. Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Gen Res 15:516–525CrossRefGoogle Scholar
  16. McCauley DE (1995) The use of chloroplast DNA polymorphism in studies of gene flow in plants. Trends Ecol Evol 10:198–202CrossRefGoogle Scholar
  17. Mitchell ND (1976) The status of Brassica oleracea L. subsp. oleracea (wild cabbage) in the British Isles. Watsonia 11:97–103Google Scholar
  18. Molina-Cano JL, Russell JR, Moralejo MA, Escacena JL, Arias G, Powell W (2005) Chloroplast DNA microsatellite analysis supports a polyphyletic origin for barley. Theor Appl Genet 110:613–619PubMedCrossRefGoogle Scholar
  19. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323PubMedCrossRefGoogle Scholar
  20. Palmer JD, Shields CR, Cohen DB, Orton TJ (1983) Chloroplast DNA evolution and the origin of amphidiploid Brassica species. Theor Appl Genet 65:181–189CrossRefGoogle Scholar
  21. Panda S, Martín JP, Aguinagalde I (2003) Chloroplast and nuclear DNA studies in a few members of the Brassica oleracea L. group using PCR-RFLP and ISSR-PCR markers; a population genetic analysis. Theor Appl Genet 106:1122–1128PubMedGoogle Scholar
  22. Parkin IAP, Sharpe AG, Keith DJ, Lydiate DJ (1995) Identification of the A and C genomes of amphidiploid Brassica napus oilseed rape. Genome 38:1122–1131Google Scholar
  23. Provan J, Russell JR, Booth A, Powell W (1999a) Polymorphic simple sequence repeat primers for systematic and population studies in the genus Hordeum. Mol Ecol 8:505–511CrossRefGoogle Scholar
  24. Provan J, Soranzo N, Wilson NJ, Goldstein DB, Powell W (1999b) A low mutation rate for chloroplast microsatellites. Genetics 153:943–947Google Scholar
  25. Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16:142–147PubMedCrossRefGoogle Scholar
  26. Sharpe AG, Parkin IAP, Keith DJ, Lydiate DJ (1995) Frequent nonreciprocal translocations in the amphidiploid genome of oilseed rape (Brassica napus). Genome 38:1112–1121Google Scholar
  27. Snogerup S, Gustafsson M, von Bothmer R (1990) Brassica sect. Brassica (Brassicaceae) I. Taxonomy and variation. Willdenowia 19:271–365Google Scholar
  28. Song K, Osborn TC, Williams PH (1990) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs) 3. Genome relationships in Brassica and related genera and the origin of B. oleracea and B. rapa (syn. campestris). Theor Appl Genet 79:497–506CrossRefGoogle Scholar
  29. Song K, Tang K, Osborn T C (1993) Development of synthetic Brassica amphidiploids by reciprocal hybridization and comparison to natural amphidiploids . Theor Appl Genet 86:811–821CrossRefGoogle Scholar
  30. Tatout C, Warwick S, Lenoir A, Deragon J-M (1999) SINE insertions as clade markers for wild crucifer species. Mol Biol Evol 16:1614–1621Google Scholar
  31. Thompson KF (1979) Cabbages, kales etc. Brassica oleracea (Cruciferae). In: Simmonds NW (ed) Evolution of crop plants, Longman Group, LondonGoogle Scholar
  32. UN (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilisation. Jap J Bot 7:389–452Google Scholar
  33. Vendramin GG, Anzidei M, Madaghiele A, Sperisen C, Bucci G (2000) Chloroplast microsatellite analysis reveals the presence of population subdivision in Norway spruce (Picea abies K.). Genome 43:68–78PubMedCrossRefGoogle Scholar
  34. Warwick SI, Black LD (1991) Molecular systematics of Brassica and allied genera (subtribe Brassicinae, Brassiceae)—chloroplast genome and cytodeme congruence. Theor Appl Genet 82:81–92CrossRefGoogle Scholar
  35. Warwick SI, Francis A, La Fleche J (2000) Guide to the wild germplasm of brassica and allied crops (tribe Brassiceae, Brassicaceae), 2nd edn.
  36. Wolfe KH, Li W-H, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058PubMedCrossRefGoogle Scholar
  37. Xu DH, Abe J, Gai JY, Shimamoto Y (2002) Diversity of chloroplast DNA SSRs in wild and cultivated soybeans; evidence for multiple origins of cultivated soybean. Theor Appl Genet 105:645–653PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • C. J. Allender
    • 1
  • J. Allainguillaume
    • 2
  • J. Lynn
    • 1
  • G. J. King
    • 3
  1. 1.Warwick HRIWarwickUK
  2. 2.School of Biological Sciences, Plant Science LaboratoriesUniversity of ReadingReadingUK
  3. 3.Rothamsted ResearchHarpendenUK

Personalised recommendations