Theoretical and Applied Genetics

, Volume 114, Issue 2, pp 341–349 | Cite as

A microsatellite marker based linkage map of tobacco

  • Gregor Bindler
  • Rutger van der Hoeven
  • Irfan Gunduz
  • Jörg Plieske
  • Martin Ganal
  • Luca Rossi
  • Ferruccio Gadani
  • Paolo DoniniEmail author
Original Paper


We report the first linkage map of tobacco (Nicotiana tabacum L.) generated through microsatellite markers. The microsatellite markers were predominantly derived from genomic sequences of the Tobacco Genome Initiative (TGI) through bioinformatics screening for microsatellite motives. A total of 684 primer pairs were screened for functionality in a panel of 16 tobacco lines. Of those, 637 primer pairs were functional. Potential parents for mapping populations were evaluated for their polymorphism level through genetic similarity analysis. The similarity analysis revealed that the known groups of tobacco varieties (Burley, Flue-cured, Oriental and Dark) form distinct clusters. A mapping population, based on a cross between varieties Hicks Broad Leaf and Red Russian, and consisting of 186 F2 individuals, was selected for mapping. A total of 282 functional microsatellite markers were polymorphic in this population and 293 loci could be mapped together with the morphological trait flower color. Twenty-four tentative linkage groups spanning 1,920 cM could be identified. This map will provide the basis for the genetic mapping of traits in tobacco and for further analyses of the tobacco genome.


Linkage Group Microsatellite Marker Mapping Population Tobacco Genome Solanaceous Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Prof. Ramsey Lewis is acknowledged for providing the seeds for the mapping population. TraitGenetics GmbH is thankful to Anika Küttner and Doris Kriseleit for their qualified technical assistance. Furthermore, the efforts of Alec Hayes (Philip Morris USA), C. Opperman and S. Lommel (both North Carolina State University) within the TGI are acknowledged.

Supplementary material

122_2006_437_MOESM1_ESM.doc (407 kb)
Supplementary material


  1. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218Google Scholar
  2. Benson G. (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27–2:573–580CrossRefGoogle Scholar
  3. Bernatzky R, Tanksley SD (1986) Towards a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics 112:887–898Google Scholar
  4. Bogani P, Liò P, Intriri C, Buratti M (1997) A physiological and molecular analysis of the genus Nicotiana. Mol Phylogenet Evol 7:62–70PubMedCrossRefGoogle Scholar
  5. Borisjuk NV, Davidjuk YM, Kostishin SS, Mirosgnichenco GP, Velasco R, Hemleben V, Volkonov RA (1997) Structural analysis of the rDNA in the genus Nicotiana. Plant Mol Biol 35:655–660PubMedCrossRefGoogle Scholar
  6. Casacuberta JM, Vernhettes S, Grandbastien MA (1995) Sequence variability within the tabacco retrotransposon Tnt1 population. EMBO J 14:2670–2678PubMedGoogle Scholar
  7. Davis DL, Nielsen MT (1999) Tobacco—production, chemistry and technology. Blackwell, OxfordGoogle Scholar
  8. De Jong WS, Eannetta NT, De Jong DM, Bodis M (2004) Candidate gene analysis of anthocyanin pigmentation loci in the Solanaceae. Theor Appl Genet 108:423–432PubMedCrossRefGoogle Scholar
  9. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302CrossRefGoogle Scholar
  10. Doganlar S, Frary A, Daunay M-C, Lester R, Tanksley SD (2002a) A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics 161:1697–1711Google Scholar
  11. Doganlar S, Frary A, Daunay M-C, Lester R, Tanksley SD (2002b) Conservation of gene function in the Solanaceae as revealed by comparative mapping of domestication traits in eggplant. Genetics 161:1713–1726Google Scholar
  12. Fulton T, van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis and utilization of conserved ortholog set (COS) markers for comparative genomics in higher plants. Plant Cell 14:1457–1467PubMedCrossRefGoogle Scholar
  13. Gadani F, Hayes A, Opperman CH, Lommel SA, Sosinski BR, Burke M, Hi L, Brierly R, Salstead A, Heer J, Fuelner G, Lakey N (2003) Large scale genome sequencing and analysis of Nicotiana tabacum: the tobacco genome initiative. In: Proceedings, 5èmes Journées Scientifiques du Tabac de Bergerac—5th Bergerac Tobacco Scientific Meeting, Bergerac, pp 117–130,
  14. Goodspeed TH (1954) The genus Nicotiana. Chronica Botanica, Waltham, MAGoogle Scholar
  15. Gregor W, Mette MF, Staginnus C, Matzke MA, Matzke AJM (2004) A distinct endogenous pararetrovirus family in Nicotina tomentosiformis, a diploid progenitor of polyploid tobacco. Plant Physiol 134:1191–1199PubMedCrossRefGoogle Scholar
  16. Julio E, Verrier J-L, de Borne FD (2005) Development of SCAR markers linked to three disease resistances based on AFLP within Nicotiana tabacum L. Theor Appl Genet 112:335–346PubMedCrossRefGoogle Scholar
  17. Kenton A, Parokonny AS, Gleba YY, Bennett MD (1993) Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol Gen Genet 240:159–169PubMedCrossRefGoogle Scholar
  18. Lim KY, Matyasek R, Kovarik A, Leitch AR (2004) Genome evolution in allotetraploid Nicotiana. Biol J Linn Soc 82:599–606CrossRefGoogle Scholar
  19. Lin TY, Kao YY, Lin S, Lin RF, Chen CM, Fuang CH, Wang CK, Lin YZ, Chen CC (2001) A genetic linkage map of Nicotiana plumbaginifolia/Nicotiana longiflora based on RFLP and RAPD markers. Theor Appl Genet 103:905–911CrossRefGoogle Scholar
  20. Lin C, Mueller LA, McCarthy J, Crouzillat D, Petiard V, Tanksley SD (2005) Coffee and tomato share common gene repertoires as revealed by deep sequencing of seed and cherry transcripts. Theor Appl Genet 112:114–130PubMedCrossRefGoogle Scholar
  21. Livingstone KD, Lackney VK, Blauth JR, van Wijk R, Jahn MK (1999) Genetic mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 152:1183–1202PubMedGoogle Scholar
  22. Mueller LA, Solow TH, Skwarecki B, Buels R, Binns J, Lin C, Wright MH, Ahrens R, Wang Y, Herbst EV, Keyder ER, Menda N, Zamir D, Tanksley SD (2005) The SOL Genomics Network: a comparative resource for Solanaceae biology and beyond. Plant Physiol 138:1310–1317PubMedCrossRefGoogle Scholar
  23. Nishi T, Tajima T, Noguchi S, Ajisaka H, Nedishi H (2003) Identification of DNA markers of tobacco linked to bacterial wilt resistance. Theor Appl Genet 106:765–770PubMedGoogle Scholar
  24. Ren N, Timko MP (2001) AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome 44:559–571PubMedCrossRefGoogle Scholar
  25. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedGoogle Scholar
  26. Rogers SO, Bendich AJ (1988) Extraction of DNA from plant tissues. Plant Mol Biol Manual A6:1–10Google Scholar
  27. Rossi L, Bindler G, Pijnenburg H, Isaac P, Giraud-Henry I, Mahe M, Orvain C, Gadani F (2001) Potential of molecular marker analysis for variety identification in processed tobacco. Plant Varieties and Seeds 14:89–101Google Scholar
  28. Suen DF, Wang CK, Lin RF, Kao YY, Lee FM, Chen CC (1997) Assignment of DNA markers to Nicotiana sylvestris chromosomes using monosomic alien addition lines. Theor Appl Genet 94:331–337CrossRefGoogle Scholar
  29. Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW et al (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160PubMedGoogle Scholar
  30. Van Ooijen JW, Voorrips RE (2001) JoinMap® 3.0, software for calculation of genetic linkage maps. Plant Research International, WageningenGoogle Scholar
  31. Volkov RA, Borisjuk NV, Panchuk BI, Schweizer D, Hemleben V (1999) Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum. Mol Biol Evol 16:311–320PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Gregor Bindler
    • 1
  • Rutger van der Hoeven
    • 1
  • Irfan Gunduz
    • 2
  • Jörg Plieske
    • 3
  • Martin Ganal
    • 3
  • Luca Rossi
    • 1
  • Ferruccio Gadani
    • 1
  • Paolo Donini
    • 1
    Email author
  1. 1.Applied Research DepartmentPhilip Morris International, R&DNeuchâtelSwitzerland
  2. 2.Philip Morris USA, Research CenterRichmondUSA
  3. 3.TraitGenetics GmbHGaterslebenGermany

Personalised recommendations