Theoretical and Applied Genetics

, Volume 114, Issue 2, pp 307–319

High levels of linkage disequilibrium and associations with forage quality at a Phenylalanine Ammonia-Lyase locus in European maize (Zea mays L.) inbreds

  • Jeppe R. Andersen
  • Imad Zein
  • Gerhard Wenzel
  • Birte Krützfeldt
  • Joachim Eder
  • Milena Ouzunova
  • Thomas Lübberstedt
Original Paper

Abstract

Forage quality of maize is influenced by both the content and structure of lignin in the cell wall. Phenylalanine Ammonia-Lyase (PAL) catalyzes the first step in lignin biosynthesis in plants; the deamination of l-phenylalanine to cinnamic acid. Successive enzymatic steps lead to the formation of three monolignols, constituting the complex structure of lignin. We have cloned and sequenced a PAL genomic sequence from 32 maize inbred lines currently employed in forage maize breeding programs in Europe. Low nucleotide diversity and excessive linkage disequilibrium (LD) was identified at this PAL locus, possibly reflecting selective constrains resulting from PAL being the first enzyme in the monolignol, and other, pathways. While the association analysis was affected by extended LD and population structure, several individual polymorphisms were associated with neutral detergent fiber (not considering population structure) and a single polymorphism was associated with in vitro digestibility of organic matter (considering population structure).

Abbreviations

IVDOM

In vitro digestibility of organic matter

WSC

Water soluble carbohydrates

NDF

Neutral detergent fiber

DNDF

Digestibility of neutral detergent fiber

Indel

Insertion–deletion polymorphism

LD

Linkage disequilibrium

PAL

Phenylalanine Ammonia-Lyase

SNP

Single nucleotide polymorphism

References

  1. Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560PubMedCrossRefGoogle Scholar
  2. Andersen JR, Schrag T, Melchinger AE, Zein I, Lübberstedt T (2005) Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor Appl Genet 111:206–217PubMedCrossRefGoogle Scholar
  3. Ballard CS, Thomas ED, Tsang DS, Mandebvu P, Sniffen CJ, Endres MI, Carter MP (2001) Effect of corn silage hybrid on dry matter yield, nutrient composition, in vitro digestion, intake by dairy heifers, and milk production by dairy cows. J Dairy Sci 84:442–452PubMedCrossRefGoogle Scholar
  4. Barrière Y, Guillet C, Goffner D, Pichon M (2003) Genetic variation and breeding strategies for improved cell wall digestibility in annual forage crops. A review. Anim Res 52:193–228CrossRefGoogle Scholar
  5. Barrière Y, Emile JC, Traineau R, Surault F, Briand M, Gallais A (2004) Genetic variation for organic matter and cell wall digestibility in silage maize. Lessons from a 34-year long experiment with sheep in digestibility crates. Maydica 49:115–126Google Scholar
  6. Barrière Y, Alber D, Dolstra O, Lapierre C, Motto M, Ordas A, Van Waes J, Vlasminkel L, Welcker C, Monod JP (2005) Past and prospects of forage maize breeding in Europe.I. The grass cell wall as a basis of genetic variation and future improvements in feeding value. Maydica 50:259–274Google Scholar
  7. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546PubMedCrossRefGoogle Scholar
  8. Chabannes M, Ruel K, Yoshinaga A, Chabbert B, Jauneau A, Joseleau JP, Boudet AM (2001) In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. Plant J 28:271–282PubMedCrossRefGoogle Scholar
  9. Cherney JH, Cherney DJR, Akin DE, Axtell JD (1991) Potential of brown-midrib, low-lignin mutants for improving forage quality. Adv Agron 46:157–198CrossRefGoogle Scholar
  10. Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski AJ (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19PubMedCrossRefGoogle Scholar
  11. Clark RM, Linton E, Messing J, Doebley JF (2004) Pattern of diversity in the genomic region near the maize domestication gene tb1. PNAS 101:700–707PubMedCrossRefGoogle Scholar
  12. Collazo P, Montoliu L, Puigdomenech P, Rigau J (1992) Structure and expression of the lignin O-methyltransferase gene from Zea mays L. Plant Mol Biol 20:857–867PubMedCrossRefGoogle Scholar
  13. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  14. Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequlibrium in plants. Annu Rev Plant Biol 54:357–374PubMedCrossRefGoogle Scholar
  15. Fontaine AS, Barrière Y (2003) Caffeic acid O-methyltransferase allelic polymorphism characterization and analysis in different maize inbred lines. Mol Breed 11:69–75CrossRefGoogle Scholar
  16. Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709PubMedGoogle Scholar
  17. Gaut BS, Long AD (2003) The lowdown on linkage disequilibrium. Plant Cell 15:1502–1506PubMedCrossRefGoogle Scholar
  18. Grabber JH, Ralph J, Lapierre C, Barrière Y (2004) Genetic and molecular basis of grass cell-wall degradability. I. Lignin-cell wall matrix interactions. CR Biol 327:455–465Google Scholar
  19. Guillet-Claude C, Birolleau-Touchard C, Manicacci D, Fourmann M, Barraud S, Carret V, Martinant JP, Barrière Y (2004a) Genetic diversity associated with variation in silage corn digestibility for three O-methyltransferase genes involved in lignin biosynthesis. Theor Appl Genet 110:126–135CrossRefGoogle Scholar
  20. Guillet-Claude C, Birolleau-Touchard C, Manicacci D, Rogowsky P, Rigau J, Murigneux A, Martinant JP, Barrière Y (2004b) Nucleotide diversity of the ZmPox3 maize peroxidase gene: relationships between a MITE insertion in exon 2 and variation in forage maize digestibility. BMC Genet 5:19CrossRefGoogle Scholar
  21. Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485PubMedCrossRefGoogle Scholar
  22. Hudson RR, Kaplan NL (1985) Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111:147–164PubMedGoogle Scholar
  23. Jones L, Ennos AR, Turner SR (2001) Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. Plant J 26:205–216PubMedCrossRefGoogle Scholar
  24. Jung M, Ching A, Bhattramakki D, Dolan M, Tingey S, Morgante M, Rafalski A (2004) Linkage disequilibrium and sequence diversity in a 500-kbp region around the adh1 locus in elite maize germplasm. Theor Appl Genet 109:681–689PubMedCrossRefGoogle Scholar
  25. Keith CS, Hoang DO, Barret BM, Feigelman B, Nelson MC, Thai H, Baysdorfer C (1993) Partial sequence analysis of 130 randomly selected maize cDNA clones. Plant Physiol 101:329–332PubMedCrossRefGoogle Scholar
  26. Kim Y, Nielsen R (2004) Linkage disequilibrium as a signature of selective sweeps. Genetics 167:1513–1524PubMedCrossRefGoogle Scholar
  27. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence aligment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  28. Lübberstedt T, Zein I, Andersen JR, Wenzel G, Krützfeldt B, Eder J, Ouzunova M, Chun S (2005) Development and application of functional markers in maize. Euphytica 146:101–108CrossRefGoogle Scholar
  29. Luff G, Schoorl W (1929) Suiker titratie. Chem Weekbl 26:130–134Google Scholar
  30. Morrow SL, Mascia P, Self KA, Altschuler M (1997) Molecular characterization of a brown midrib3 deletion mutation in maize. Mol Breed 3:351–357CrossRefGoogle Scholar
  31. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  32. Palaisa KA, Morgante M, Williams M, Rafalski A (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15:1795–1806PubMedCrossRefGoogle Scholar
  33. Pedersen JF, Vogel KP, Funnell DL (2005) Impact of reduced lignin on plant fitness. Crop Sci 45:812–819CrossRefGoogle Scholar
  34. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  35. Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133:1051–1071PubMedCrossRefGoogle Scholar
  36. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. PNAS 98:11479–11484PubMedCrossRefGoogle Scholar
  37. Rohde A, Morreel K, Ralph J, Goeminne G, Hostyn V, De Rycke R, Kushnir S, Van Doorsselaere J, Joseleau JP, Vuylsteke M, Van Driessche G, Van Beeumen J, Messens E, Boerjan W (2004) Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell 16:2749–2771PubMedCrossRefGoogle Scholar
  38. Rosler J, Krekel F, Amrhein N, Schmid J (1997) Maize Phenylalanine Ammonia-Lyase has Tyrosine Ammonia-Lyase activity. Plant Physiol 113:175–179PubMedCrossRefGoogle Scholar
  39. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497PubMedCrossRefGoogle Scholar
  40. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. PNAS 81:8014–8018PubMedCrossRefGoogle Scholar
  41. Senior ML, Murphy JP, Goodman MM, Stuber CW (1998) Utility of SSRs for determining genetic similarities and relationships in maize using an agarose gel system. Crop Sci 38:1088–1098CrossRefGoogle Scholar
  42. Sewalt VJH, Ni W, Blount JW, Jung HG, Masoud SA, Howles PA, Lamb C, Dixon RA (1997) Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of l-Phenylalanine Ammonia-Lyase or Cinnamate 4-Hydroxylase. Plant Physiol 115:41–50PubMedGoogle Scholar
  43. Smith JSC, Chin ECL, Shu H, Smith OS, Wall SJ, Senior ML, Mitchell SE, Kresovich S, Ziegle J (1997) An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theor Appl Genet 95:163–173CrossRefGoogle Scholar
  44. Szalma SJ, Buckler ES, Snook ME, McMullen MD (2005) Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theor Appl Genet 110:1324–1333PubMedCrossRefGoogle Scholar
  45. Tajima F (1989) The effect of change in population size on DNA polymorphism. Genetics 123:597–601PubMedGoogle Scholar
  46. Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). PNAS 98:9161–9166PubMedCrossRefGoogle Scholar
  47. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting,positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedGoogle Scholar
  48. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289PubMedCrossRefGoogle Scholar
  49. Tilley JMA, Terry RA (1963) A two stage technique for in vitro digestion of forage crops. J Brit Grassl Soc 18:104–111CrossRefGoogle Scholar
  50. VanSoest PJ (1963) Use of detergents in analysis of fibrous feeds. II. A rapid method for determination of fiber and lignin. J Assoc Off Agric Chem 46:829–835Google Scholar
  51. Vignols F, Rigau J, Torres MA, Capellades M, Puigdomenech P (1995) The brown midrib3 (bm3) mutation in maize occurs in the gene encoding Caffeic Acid O-Methyltransferase. Plant Cell 7:407–416PubMedCrossRefGoogle Scholar
  52. Wang R-L, Stec A, Hey J, Lukens L, Doebley J (1999) The limits of selection during maize domestication. Nature 398:236–239PubMedCrossRefGoogle Scholar
  53. Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Pop Biol 7:256–276CrossRefGoogle Scholar
  54. Weir BS (1996) Genetic data analysis II. Sinauer, SunderlandGoogle Scholar
  55. Whitt SR, Wilson LM, Tenaillon MI, Gaut BS, Buckler ES (2002) Genetic diversity and selection in the maize starch pathway. PNAS 99:12959–12962PubMedCrossRefGoogle Scholar
  56. Wilson LM, Whitt SR, Ibanez AM, Rocheford TR, Goodman MM, Buckler ES (2004) Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell 16:2719–2733PubMedCrossRefGoogle Scholar
  57. Winkel BSJ (2004) Metabolic channeling in plants. Annu Rev Plant Biol 55:85–107PubMedCrossRefGoogle Scholar
  58. Zein I, Wenzel G, Andersen JR, Lübberstedt T (2006) Nucleotide sequence diversity at the Caffeic acid O-methyltransferase locus in 42 European elite maize inbred lines. Genet Resour Crop Ev (in press)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Jeppe R. Andersen
    • 1
  • Imad Zein
    • 2
  • Gerhard Wenzel
    • 2
  • Birte Krützfeldt
    • 3
  • Joachim Eder
    • 3
  • Milena Ouzunova
    • 4
  • Thomas Lübberstedt
    • 1
  1. 1.Danish Institute of Agricultural Sciences, Research Center FlakkebjergSlagelseDenmark
  2. 2.Department of Agronomy and Plant BreedingTechnical University of MunichFreising-WeihenstephanGermany
  3. 3.Bavarian State Research Center for AgricultureFreising-WeihenstephanGermany
  4. 4.KWS Saat AGEinbeckGermany

Personalised recommendations