Theoretical and Applied Genetics

, Volume 114, Issue 2, pp 237–248 | Cite as

Local genetic diversity of sorghum in a village in northern Cameroon: structure and dynamics of landraces

  • Adeline BarnaudEmail author
  • Monique Deu
  • Eric Garine
  • Doyle McKey
  • Hélène I. Joly
Original Paper


We present the first study of patterns of genetic diversity of sorghum landraces at the local scale. Understanding landrace diversity aids in deciphering evolutionary forces under domestication, and has applications in the conservation of genetic resources and their use in breeding programs. Duupa farmers in a village in Northern Cameroon distinguished 59 named sorghum taxa, representing 46 landraces. In each field, seeds are sown as a mixture of landraces (mean of 12 landraces per field), giving the potential for extensive gene flow. What level of genetic diversity underlies the great morphological diversity observed among landraces? Given the potential for gene flow, how well defined genetically is each landrace? To answer these questions, we recorded spatial patterns of planting and farmers’ perceptions of landraces, and characterized 21 landraces using SSR markers. Analysis using distance and clustering methods grouped the 21 landraces studied into four clusters. These clusters correspond to functionally and ecologically distinct groups of landraces. Within-landrace genetic variation accounted for 30% of total variation. The average F is over landraces was 0.68, suggesting high inbreeding within landraces. Differentiation among landraces was substantial and significant (F st = 0.36). Historical factors, variation in breeding systems, and farmers’ practices all affected patterns of genetic variation. Farmers’ practices are key to the maintenance, despite gene flow, of landraces with different combinations of agronomically and ecologically pertinent traits. They must be taken into account in strategies of conservation and use of genetic resources.


Sorghum Simple Sequence Repeat Marker Simple Sequence Repeat Locus Private Allele Seed Exchange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is part of the PhD thesis of the first author. This research was funded by a grant from the “Institut Français de la Biodiversité”. We thank Claire Billot and the Montpellier Languedoc-Roussillon Genopole platform for technical assistance. We acknowledge the help of J. Chantereau of CIRAD in the racial characterization of landraces. We thank the government of Cameroon for allowing us to carry out our fieldwork in Wanté, and Aboubacar Moussa and the MEADEN for their assistance in Cameroon. Research assistance by Simon Monné and Celestin Khasah is gratefully acknowledged. Our greatest debt of gratitude is to the Duupa farmers of Wanté for providing the research material, for their hospitality, and for their interest in participating in our study. We thank two anonymous reviewers for valuable suggestions.

Supplementary material

122_2006_426_MOESM_ESM.doc (26 kb)
Supplementary material


  1. Aldrich PR, Doebley J, Schertz KF, Stec A (1992) Patterns of allozyme variation in cultivated and wild Sorghum bicolor. Theor Appl Genet 85:451–460Google Scholar
  2. Alvarez N, Garine E, Khasah C, Dounias E, Hossaert-McKey M, McKey D (2005) Farmers’ practices, metapopulation dynamics, and conservation of agricultural biodiversity on-farm: a case study of sorghum among the Duupa in sub-sahelian Cameroon. Biol Conserv 121:533–543CrossRefGoogle Scholar
  3. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2002) genetix 4.04, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier, France (available from:∼genetix/genetix/genetix.htm)
  4. Bhattramakki D, Dong J, Chhabra AK, Hart GE (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43:988–1002PubMedCrossRefGoogle Scholar
  5. Borgatti SP (1996) ANTHROPAC 4.0. Analytic Technologies, Natick, MA, USAGoogle Scholar
  6. Brown SM, Hopkins MS, Mitchell SE, Senior ML, Wang TY, Duncan RR, Gonzalez Candelas F, Kresovich S (1996) Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 93:190–198CrossRefGoogle Scholar
  7. Brush SB (2000) The issue of in situ conservation of crop genetic resources. In: Brush SB (ed) Genes in the field: on-farm conservation of crop diversity. IDRC/IPGRI/Lewis Publishers, Boca Raton, pp 3–26Google Scholar
  8. Caillon S, Lanouguère-Bruneau V (2005) Gestion de l’agrobiodiversité dans un village de Vanua Lava (Vanuatu): Stratégies de sélection et enjeux sociaux. Journal de la Société des Océanistes 49:129–148Google Scholar
  9. Casa AM, Mitchell SE, Hamblin MT, Sun H, Bowers JE, Paterson AH, Aquadro CF Kresovich S (2005) Diversity and selection in sorghum: simultaneous analyses using simple sequence repeats. Theor Appl Genet 111:23–30PubMedCrossRefGoogle Scholar
  10. Chantereau J, Nicou R (1991) Le sorgho. Maisonneuve & Larose, ParisGoogle Scholar
  11. Chittenden LM, Schertz KF, Lin YR, Wing RA, Paterson AH (1994) A detailed RFLP map of Sorghum bicolor × Sorghum propinquum suitable for high density mapping suggests ancestral duplication of Sorghum chromosomes or chromosomal segments. Theor Appl Genet 87:925–933CrossRefGoogle Scholar
  12. Cui YX, Xu GW, Magill CW, Schertz KF, Hart GE (1995) RFLP-based assay of Sorghum-bicolor (L.) Moench genetic diversity. Theor Appl Genet 90:787–796CrossRefGoogle Scholar
  13. de Oliveira AC, Richter T, Bennetzen JL (1996) Regional and racial specificities in sorghum germplasm assessed with DNA markers. Genome 39:579–587PubMedGoogle Scholar
  14. Deu M, Gonzalez-de-Leon D, Glaszmann JC, Degremont I, Chantereau J, Lanaud C, Hamon P (1994) RFLP diversity in cultivated sorghums in relation to racial differentiation. Theor Appl Genet 88:838–844CrossRefGoogle Scholar
  15. Deu M, Rattunde F, Chantereau J (2006) A global view of genetic diversity in cultivated sorghum using a core collection. Genome 49:168–180PubMedGoogle Scholar
  16. Dickinson H, Antovonics J (1973) Theoretical considerations of sympatric divergence. Am Nat 107:256–274CrossRefGoogle Scholar
  17. Djè Y, Forcioli D, Ater M, Lefèbre C, Vekemans X (1999) Assessing population genetic structure of sorghum landraces from North-western Morocco using allozyme and microsatellite markers. Theor Appl Genet 99:157–163CrossRefGoogle Scholar
  18. Djè Y, Heuertz M, Lefèbre C, Vekemans X (2000) Assessment of genetic diversity within and among germplasm accessions in cultivated sorghum using microsatellite markers. Theor Appl Genet 100:918–925CrossRefGoogle Scholar
  19. Djè Y, Heuertz M, Ater M, Lefèbre C, Vekemans X (2004) In situ estimation of outcrossing rate in sorghum landraces using microsatellite markers. Euphytica 138:205–212CrossRefGoogle Scholar
  20. Doggett H (1988) Sorghum, 2nd edn. Wiley, New YorkGoogle Scholar
  21. Elias M, Panaud O, Robert T (2000a) Assessment of genetic variability in a traditional cassava (Manihot esculenta Crantz) farming system, using AFLP markers. Heredity 85:219–230CrossRefGoogle Scholar
  22. Elias M, Rival L, McKey D (2000b) Perception and management of cassava (Manihot esculenta Crantz) diversity among Makushi Amerindians of Guyana (South America). J Ethnobiol 20:239–265Google Scholar
  23. Ellstrand NC, Foster KW (1983) Impact of population structure on the apparent outcrossing rate of grain sorghum (Sorghum bicolor). Theor Appl Genet 66:323–327CrossRefGoogle Scholar
  24. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedGoogle Scholar
  25. Garine E (1995) Le système agraire des Duupa du Massif de Poli (Nord Cameroun). Thèse de Doctorat, Université Paris X (Nanterre), FranceGoogle Scholar
  26. Ghebru B, Schmidt RJ, Bennetzen JL (2002) Genetic diversity of Eritrean sorghum landraces assessed with simple sequence repeat (SSR) markers. Theor Appl Genet 105:229–236PubMedCrossRefGoogle Scholar
  27. Grenier C, Bramel-Cox PJ, Noirot M, Rao KEP, Hamon P (2000a) Assessment of genetic diversity in three subsets constituted from the ICRISAT sorghum collection using random vs non-random sampling procedures A. Using morpho-agronomical and passport data. Theor Appl Genet 101:190–196CrossRefGoogle Scholar
  28. Grenier C, Deu M, Kresovich S, Bramel-Cox PJ, Hamon P (2000b) Assessment of genetic diversity in three subsets constituted from the ICRISAT sorghum collection using random vs non-random sampling procedures B. Using molecular markers. Theor Appl Genet 101:197–202CrossRefGoogle Scholar
  29. Harlan JR, de Wet JMJ (1972) Simplified classification of cultivated sorghum. Crop Sci 12:172–176CrossRefGoogle Scholar
  30. Haussmann BIG, Obilana AB, Ayiecho PO, Blum A, Schipprack W, Geiger HH (2000) Yield and yield stability of four population types of grain sorghum in a semi-arid area of Kenya. Crop Sci 40:319–329Google Scholar
  31. Kim J-S, Klein PE, Klein RR, Price HJ, Mullet JE, Stelly DM (2005) Chromosome identification and nomenclature of Sorghum bicolor. Genetics 169:955–965PubMedCrossRefGoogle Scholar
  32. Kong L, Dong J, Hart GE, (2000) Characteristics, linkage-map positions, and allelic differentiation of Sorghum bicolor (L.) Moench DNA simple-sequence repeats (SSRs). Theor Appl Genet 101:438–448CrossRefGoogle Scholar
  33. Kshirsagar KG, Pandey S (1995) Diversity of rice cultivars in a rainfed village in the Orissa state of India. In: Proceedings of the seminar ‘Using diversity: enhancing and maintaining genetic resources on farm’, June 19–21 1995. International Development Research Center, New DelhiGoogle Scholar
  34. Louette D (2000) Traditional management of seed and genetic diversity: what is a landrace? In: Brush SB (ed) Genes in the field: on-farm conservation of crop diversity. IDRC/IPGRI/Lewis Publishers, Boca Raton, pp 109–142Google Scholar
  35. Louette D, Smale M (2000) Farmers’ seed selection practices and traditional maize varieties in Cuzalapa, Mexico. Euphytica 113:25–41CrossRefGoogle Scholar
  36. Menkir A, Goldsbrough P, Ejeta G (1997) RAPD based assessment of genetic diversity in cultivated races of sorghum. Crop Sci 37:564–569CrossRefGoogle Scholar
  37. Menz MA, Klein RR, Mullet JE, Obert JA, Unruh NC, Klein PE (2002) A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP (R), RFLP and SSR markers. Plant Mol Biol 48:483–499PubMedCrossRefGoogle Scholar
  38. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedGoogle Scholar
  39. Nkongolo KK, Nsapato L (2003) Genetic diversity in Sorghum bicolor (L.) Moench accessions from different ecogeographical regions in Malawi assessed with RAPDs. Genet Resour Crop Evol 50:149–156CrossRefGoogle Scholar
  40. Ollitrault O, Noyer JL, Chantereau J, Glaszmann JC (1997) Structure génétique et dynamique des variétés traditionnelles de sorgho au Burkina Faso. In: Begic A (Ed), Gestion des ressources génétiques de plantes en Afrique des savanes. IER-BRG Solagral, Bamako, Mali, pp 231–240Google Scholar
  41. Paterson AH, Lin Y, Li Z, Schertz KF, Doebley JF, Pinson SRM, Liu SC, Stansel JW, Irvine JE (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718CrossRefPubMedGoogle Scholar
  42. Perrier X, Flori A, Bonnot F (2003) Methods for data analysis. In: Hamon P, Seguin M, Perrier X, Glazmann JC (eds) Genetic diversity of cultivated tropical plants. Science Publishers, Inc and Cirad, Montpellier, pp 31–63Google Scholar
  43. Pressoir G, Berthaud J (2004) Patterns of population structure in maize landraces from the Central Valleys of Oaxaca in Mexico. Heredity 92:88–94PubMedCrossRefGoogle Scholar
  44. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  45. Schloss SJ, Mitchell SE, White GM, Kukatla R, Bowers JE, Paterson AH, Kresovich S (2002) Characterization of RFLP probe sequences for gene discovery and SSR development in Sorghum bicolor (L.) Moench. Theor Appl Genet 105:912–920PubMedCrossRefGoogle Scholar
  46. Smith JSC, Hopkins MS, Mitchell SE, Dean RE, Woodman WL, Lee M, Porter K (2000) Genetic diversity among elite sorghum inbred lines assessed with simple sequence repeats. Crop Sci 40:226–232CrossRefGoogle Scholar
  47. Tao Y, Manners JM, Ludlow MM, Henzell RG (1993) DNA polymorphisms in grain-sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet 86:679–688CrossRefGoogle Scholar
  48. Taramino G, Tarchini R, Ferrario S, Lee M, Pe ME (1997) Characterization and mapping of simple sequence repeats (SSRs) in Sorghum bicolor. Theor Appl Genet 95:66–72CrossRefGoogle Scholar
  49. Teshome A, Baum BR, Fahrig L, Torrance JK, Arnason TJ, Lambert JD (1997) Sorghum [Sorghum bicolor (L.) Moench] landrace variation and classification in north Shewa and south Welo, Ethiopia. Euphytica 97:255–263CrossRefGoogle Scholar
  50. Teshome A, Fahrig L, Torrance JK, Lambert JD, Arnason TJ, Baum BR (1999) Maintenance of Sorghum (Sorghum bicolor, Poaceae) landrace diversity by farmers’ selection in Ethiopia. Econ Bot 53:79–88Google Scholar
  51. Uptmoor R, Wenzel W, Friedt W, Donaldson G, Ayisi K (2003) Comparative analysis on the genetic relatedness of Sorghum bicolor accessions from Southern Africa by RAPDs, AFLPs and SSRs. Theor Appl Genet 106:1316–1325PubMedGoogle Scholar
  52. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Adeline Barnaud
    • 1
    Email author
  • Monique Deu
    • 2
  • Eric Garine
    • 3
  • Doyle McKey
    • 1
  • Hélène I. Joly
    • 1
  1. 1.CIRAD, UPR 67 Gestion des Ressources Génétiques et Dynamiques Sociales, UMR 5175-CEFE (Centre d’Ecologie Fonctionnelle et Evolutive)MontpellierFrance
  2. 2.CIRAD, UMR 1096-PIA, TA 40/03 Montpellier Cedex 5France
  3. 3.Laboratoire d’Ethnologie et de Sociologie Comparative CNRS, Université Paris X-Nanterre, MAE,NanterreFrance

Personalised recommendations