Theoretical and Applied Genetics

, Volume 114, Issue 1, pp 67–80

A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content

  • D. Qiu
  • C. Morgan
  • J. Shi
  • Y. Long
  • J. Liu
  • R. Li
  • X. Zhuang
  • Y. Wang
  • X. Tan
  • E. Dietrich
  • T. Weihmann
  • C. Everett
  • S. Vanstraelen
  • P. Beckett
  • F. Fraser
  • M. Trick
  • S. Barnes
  • J. Wilmer
  • R. Schmidt
  • J. Li
  • D. Li
  • J. Meng
  • I. Bancroft
Original Paper

Abstract

We have developed a new DH mapping population for oilseed rape, named TNDH, using genetically and phenotypically diverse parental lines. We used the population in the construction of a high stringency genetic linkage map, consisting of 277 loci, for use in quantitative genetic analysis. A proportion of the markers had been used previously in the construction of linkage maps for Brassica species, thus permitting the alignment of maps. The map includes 68 newly developed Sequence Tagged Site (STS) markers targeted to the homologues of defined genes of A. thaliana. The use of these markers permits the alignment of our linkage map with the A. thaliana genome sequence. An additional 74 loci (31 newly developed STS markers and 43 loci defined by SSR and RFLP markers that had previously been used in published linkage maps) were added to the map. These markers increased the resolution of alignment of the newly constructed linkage map with existing Brassica linkage maps and the A. thaliana genome sequence. We conducted field trials with the TNDH population at two sites, and over 2 years, and identified reproducible QTL for seed oil content and erucic acid content. The results provide new insights into the genetic control of seed oil and erucic acid content in oilseed rape, and demonstrate the utility of the linkage map and population.

Supplementary material

122_2006_411_MOESM1_ESM.doc (261 kb)
Supplementary material

References

  1. Arabidopsis Genome Initiative (2000) Analysis of the genome of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  2. Burns MJ, Barnes SR, Bowman JG, Clarke MHE, Werner CP, Kearsey MJ (2003) QTL analysis of an intervarietal set of substitution lines in Brassica napus. I. Seed oil content and fatty acid composition. Heredity 90:39–48PubMedCrossRefGoogle Scholar
  3. Cao G, Zhu J, He C, Gao Y, Yan J, Wu P (2001) Impact of epistasis and QTL × environment interaction on the developmental behavior of plant height in rice (Oryza sativa L.). Theor Appl Genet 103:153–160CrossRefGoogle Scholar
  4. Cheung WY, Friesen L, Rakow GFW, Seguin-Swartz G, Landry BS (1997) A RFLP-based linkage map of mustard (Brassica juncea L. Czern and Coss). Theor Appl Genet 94:841–851CrossRefGoogle Scholar
  5. Ecke W, Uzunova M, Weißleder K (1995) Mapping the genome of rapeseed (Brassica napus L.). II. Localization of genes controlling erucic acid systhesis and seed oil content. Theor Appl Genet 91:972–977CrossRefGoogle Scholar
  6. Ferreira ME, Williams PH, Osborn TC (1994) RFLP mapping of Brassica using doubled haploid lines. Theor Appl Genet 89:615–621CrossRefGoogle Scholar
  7. Foisset N, Delourme R, Barret P, Hubert N, Landry BS, Renard M (1996) Molecular mapping analysis of Brassica napus using isozyme, RAPD and RFLP markers on doubled haploid progeny. Theor Appl Genet 93:1017–1025CrossRefGoogle Scholar
  8. Howell PM, Marshall DF, Lydiate DJ (1996) Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome 39:348–358PubMedGoogle Scholar
  9. Hu JG, Vick BA (2003) Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Rep 21:289–294Google Scholar
  10. James DWJ, Dooner HK (1990) Isolation of EMS-induced mutants in Arabidopsis altered in seed fatty acid composition. Theor Appl Genet 80:241–245CrossRefGoogle Scholar
  11. James DWJ, Lim E, Keller J, Plooy I, Ralston E, Dooner HK (1995) Directed tagging of the Arabidopsis fatty acid elongation-1 (FAE1) gene with the maize transposon activator. Plant Cell 7:309–319PubMedCrossRefGoogle Scholar
  12. Jansen RC, Van Ooijen JW, Stam P, Lister C, Dean C (1995) Genotype by environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet 91:33–37CrossRefGoogle Scholar
  13. Kaushik N, Agnihotri A (2000) GLC analysis of Indian rapeseed-mustard to study the variability of fatty acid composition. Biochem Soc Trans 28:581–583PubMedCrossRefGoogle Scholar
  14. Kresovich S, Szewc-McFadden AK, Bliek SM, McFerson JR (1995) Abundance and characterization of simple sequence repeats (SSR) loci isolated from a size-fractionated genomic library of Brassica napus L. (rapeseed). Theor Appl Genet 91:206–211CrossRefGoogle Scholar
  15. Lagercrantz U, Lydiate D (1996) Comparative genome mapping in Brassica. Genetics 144:1903–1910PubMedGoogle Scholar
  16. Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228PubMedGoogle Scholar
  17. Lassner MW, Lardizabal K, Metz JG (1996) A jojoba-ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell 8:281–292PubMedCrossRefGoogle Scholar
  18. Lombard V, Delourme R (2001) A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. Theor Appl Genet 103:491–507CrossRefGoogle Scholar
  19. Lowe AJ, Jones AE, Raybould AF, Trick M, Moule CL, Edwards KJ (2002) Transferability and genome specificity of a new set of microsatellite primers among Brassica species of the U triangle. Mol Ecol Notes 2:7–11Google Scholar
  20. Lowe AJ, Moule C, Trick M, Edwards KJ (2004) Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet 108:1103–1112PubMedCrossRefGoogle Scholar
  21. Lühs W, Friedt W (1993) Nonfood uses of vegetable oils and fatty acids. In: Murphy DJ (ed) Designer oil crops: breeding, processing and biotechnology. VCH, Cambridge, pp 73–130Google Scholar
  22. Lydiate D, Sharpe A (2003) Aliging genetic maps of Brassica napus Using microsatellite markers. In: Plant & animal genomes XI conference, p 473Google Scholar
  23. Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525PubMedCrossRefGoogle Scholar
  24. Meng J, Sharpe A, Bowman C, Tian Z, Qian X, Lydiate D (1996) Genetic diversity of Brassica napus accessions mainly from China detected with RFLP markers. Chin J Genet 23(3):221–232Google Scholar
  25. Mika V, Tillmann P, Koprna R, Nerusil P, Kucera V (2003) Fast prediction of quality parameters in whole seeds of oilseed rape (Brassica napus L.). Plant Soil Environ 49:141–145Google Scholar
  26. O’Neill CM, Bancroft I (2000) Comparative physical mapping of segments of the genome of Brassica oleracea var alboglabra that are homoeologous to sequenced regions of the chromosomes 4 and 5 of Arabidopsis thaliana. Plant J 23:233–243PubMedCrossRefGoogle Scholar
  27. Parkin IAP, Sharpe AG, Lydiate DJ (2003) Patterns of genome duplication within the Brassica napus genome. Genome 46:291–303PubMedCrossRefGoogle Scholar
  28. Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781PubMedCrossRefGoogle Scholar
  29. Piepho HP (2000) A mixed-model approach to mapping quantitative trait loci in barley on the basis of multiple environment data. Genetics 156:2043–2050PubMedGoogle Scholar
  30. Pires JC, Zhao JW, Schranz ME, Leon EJ, Quijada PA, Lukens LN, Osborn TC (2004) Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae). Biol J Linn Soc 82:675–688CrossRefGoogle Scholar
  31. Rana D, van den Boogaart T, O’Neill CM, Hynes L, Bent E, Macpherson L, Park JY, Lim YP, Bancroft I (2004) Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J 40:725–733PubMedCrossRefGoogle Scholar
  32. Reyna–López GE, Simpson J, Ruiz-Herrera J (1997) Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol Gen Genet 253:703–710CrossRefGoogle Scholar
  33. Roscoe TJ, Lessire R, Puyaubert J, Renard M, Delseny M (2001) Mutation in the fatty acid elongase 1 gene are associated with a loss of ketoacyl-CoA synthase activity in low erucic acid rapeseed. FEBS Lett 492:107–111PubMedCrossRefGoogle Scholar
  34. Sharpe AG, Parkin IAP, Keith DJ, Lydiate DJ (1995) Frequent nonreciprocal translocations in the amphidiploid genome of oilseed rape (Brassica napus). Genome 38:1112–1121PubMedGoogle Scholar
  35. Szewc-McFadden AK, Kresovich S, Bliek SM, Mitchell SE, McFerson JR (1996) Identification of polymorphic, conserved simple sequence repeats (SSRs) in cultivated Brassica species. Theor Appl Genet 93:534–538Google Scholar
  36. Snowdon RJ, Friedt W (2004) Molecular markers in Brassica oilseed breeding: current status and future possibilities. Plant Breed 123:1–8CrossRefGoogle Scholar
  37. Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 5:739–744CrossRefGoogle Scholar
  38. Suwabe K, Iketani H, Nunome T, Kage T, Hirai M (2002) Isolation and characterization of microsatellites in Brassica rapa L. Theor Appl Genet 104:1092–1098PubMedCrossRefGoogle Scholar
  39. Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Fujimura M, Nunome T, Fukuoka H, Matsumoto S, Hirai M (2003) Identification of two loci for resistance to clubroot (Plasmodiophora brassicae Woronin) in Brassica rapa L. Theor Appl Genet 107:997–1002PubMedCrossRefGoogle Scholar
  40. Thormann CE, Romero J, Mantet J, Osborn TC (1996 ) Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. Theor Appl Genet 93:282–286CrossRefGoogle Scholar
  41. Uzunova MI, Ecke W, Weissleder K, Röbbelen G (1995) Mapping the genome of rapeseed (Brassica napus L.) I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet 90:194–204CrossRefGoogle Scholar
  42. Van Ooijen JW (2004) MapQTL 5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, WageningenGoogle Scholar
  43. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Fijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedGoogle Scholar
  44. Vuylsteke M, Mank R, Antonise R, Bastiaans E, Senior ML, Stuber CW, Melchinger AE, Lübberstedt T, Xia XC, Stam P, Zabeau M, Kuiper M (1999) Two high-density AFLP® linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor Appl Genet 99:921–935CrossRefGoogle Scholar
  45. Wang DL, Zhu J, Li ZK, Paterson AH (1999) Mapping of QTL with epistatic effects and QTL x environment interactions by mixed model approaches. Theor Appl Genet 99:1255–1264CrossRefGoogle Scholar
  46. Xing YZ, Tan YF, Hua JP, Sun XL, Xu CG, Zhang Q (2002) Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet 105:248–257PubMedCrossRefGoogle Scholar
  47. Yan J, Zhu J, He C, Benmoussa M, Wu P (1998) Molecular dissection of developmental behavior of pant height in rice (Oryza sativa L.). Genetics 150:1257–1265PubMedGoogle Scholar
  48. Yang YW, Lai KN, Tai PY, Li WH (1999) Rates of nucleotide substitution in Angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J Mol Evol 48:597–604PubMedCrossRefGoogle Scholar
  49. Zhao J, Becker Heiko C, Zhang D, Zhang Y, Ecke Wolfgang (2005) Oil content in a European–Chinese rapeseed population: QTL with additive and epistatic effects and their genotype–environment interactions. Crop Sci 45:51–59CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • D. Qiu
    • 1
  • C. Morgan
    • 2
  • J. Shi
    • 1
  • Y. Long
    • 1
  • J. Liu
    • 1
  • R. Li
    • 1
  • X. Zhuang
    • 3
  • Y. Wang
    • 3
  • X. Tan
    • 3
  • E. Dietrich
    • 4
  • T. Weihmann
    • 4
  • C. Everett
    • 5
  • S. Vanstraelen
    • 6
  • P. Beckett
    • 2
  • F. Fraser
    • 2
  • M. Trick
    • 2
  • S. Barnes
    • 6
  • J. Wilmer
    • 5
  • R. Schmidt
    • 4
  • J. Li
    • 3
  • D. Li
    • 7
  • J. Meng
    • 1
  • I. Bancroft
    • 2
  1. 1.National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
  2. 2.John Innes CentreNorwich Research ParkNorwichUK
  3. 3.Chinese Academy of SciencesInstitute of GeneticsBeijingChina
  4. 4.Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
  5. 5.Biogemma UKCambridgeUK
  6. 6.SESVANDERHAVE N.V./S.A. IndustrieparkTienenBelgium
  7. 7.Hybrid Rapeseed Research Centre of ShaanxiDaliChina

Personalised recommendations