Theoretical and Applied Genetics

, Volume 114, Issue 1, pp 49–58 | Cite as

Diversity of wild and cultivated pearl millet accessions (Pennisetum glaucum [L.] R. Br.) in Niger assessed by microsatellite markers

  • Cedric Mariac
  • Viviane Luong
  • Issoufou Kapran
  • Aïssata Mamadou
  • Fabrice Sagnard
  • Monique Deu
  • Jacques Chantereau
  • Bruno Gerard
  • Jupiter Ndjeunga
  • Gilles Bezançon
  • Jean-Louis Pham
  • Yves Vigouroux
Original Paper

Abstract

Genetic diversity of crop species in sub-Sahelian Africa is still poorly documented. Among such crops, pearl millet is one of the most important staple species. In Niger, pearl millet covers more than 65% of the total cultivated area. Analyzing pearl millet genetic diversity, its origin and its dynamics is important for in situ and ex situ germplasm conservation and to increase knowledge useful for breeding programs. We developed new genetic markers and a high-throughput technique for the genetic analysis of pearl millet. Using 25 microsatellite markers, we analyzed genetic diversity in 46 wild and 421 cultivated accessions of pearl millet in Niger. We showed a significantly lower number of alleles and lower gene diversity in cultivated pearl millet accessions than in wild accessions. This result contrasts with a previous study using iso-enzyme markers showing similar genetic diversity between cultivated and wild pearl millet populations. We found a strong differentiation between the cultivated and wild groups in Niger. Analyses of introgressions between cultivated and wild accessions showed modest but statistically supported evidence of introgressions. Wild accessions in the central region of Niger showed introgressions of cultivated alleles. Accessions of cultivated pearl millet showed introgressions of wild alleles in the western, central, and eastern parts of Niger.

Supplementary material

122_2006_409_MOESM1_ESM.pdf (35 kb)
Supplementary material

References

  1. Allouis S, Qi X, Lindup S, Gale MD, Devos KM (2000) Construction of a BAC library of pearl millet, Pennisetum glaucum. Theor Appl Genet 102:1200–1205CrossRefGoogle Scholar
  2. Amoukou AI, Marchais L (1993) Evidence of partial reproductive barrier between wild and cultivated pearl millets (Pennisetum glaucum). Euphytica 67:19–26CrossRefGoogle Scholar
  3. Bertin I, Zhu JH, Gale MD (2005) SSCP-SNP in pearl millet—a new marker system for comparative genetics. Theor Appl Genet 110:1467–1472PubMedCrossRefGoogle Scholar
  4. Bhattacharjee R, Bramel PJ, Hash CT, Kolesnikova-Allen MA, Khairwal IS (2002) Assessment of genetic diversity within and between pearl millet landraces. Theor Appl Genet 105:666–673PubMedCrossRefGoogle Scholar
  5. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedGoogle Scholar
  6. Budak H, Pedraza F, Cregan PB, Baenzinger PS, Dweikat I (2003) Development and utilization of SSRs to estimate the degree of genetic relationships in a collection of pearl millet germplasm. Crop Sci 43:2284–2290CrossRefGoogle Scholar
  7. Busso CS, Devos KM, Ross G, Mortimore M, Adams WM, Ambrose MJ, Alldrick S, Gale M-D (2000) Genetic diversity within and among landraces of pearl millet (Pennisetum glaucum) under farmer management in West Africa. Genet Res Crop Evol 47:561–568CrossRefGoogle Scholar
  8. Endler JA (1986) Natural selection in the wild. Princeton University Press, Princeton, NJGoogle Scholar
  9. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  10. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  11. Fukunaga K, Hill J, Vigouroux Y, Matsuoka Y, Sanchez GJ, Liu K, Buckler ES, Doebley J (2005) Genetic diversity and population structure of teosinte. Genetics 169:2241–2254PubMedCrossRefGoogle Scholar
  12. Goudet J (2001) FSTAT, a program to estimate and test gene diversity and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html. Updated from Goudet (1995)
  13. Guenguant J-P, Banoin M (2003) Dynamique des populations, disponibilités des terres et adaptation des régimes fonciers: le cas du Niger. CICRED-FAO, Paris, 157pGoogle Scholar
  14. Harlan J, De Wet J, Stemler A (1976) Origins of African plant domestication. Mouton Publishers, La HagueGoogle Scholar
  15. Leblanc JM, Pernes J (1983) Enzyme polymorphism of Pennisetum americanum in the Ivory Coast. Jpn J Genet 58:121–131Google Scholar
  16. Liu K, Muse S (2005) PowerMarker: new genetic data analysis software. Version 3.23. Free program distributed by the author over the internet from http://www.powermarker.net
  17. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  18. Marchais L (1994) Wild pearl millet (Pennisetum glaucum, Poaceae) integrity in agricultural Sahelian areas. An example from Keita (Niger). Pl Syst Evol 189:233–245CrossRefGoogle Scholar
  19. Matsuoka Y, Vigouroux Y, Goodman M-M, Sanchez J, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084PubMedCrossRefGoogle Scholar
  20. Pressoir G, Berthaud J (2004a) Patterns of population structure in maize landraces from the Central Valleys of Oaxaca in Mexico. Heredity 92:88–94CrossRefGoogle Scholar
  21. Pressoir G, Berthaud J (2004b) Population structure and strong divergent selection shape phenotypic diversification in maize landraces. Heredity 92:95–101CrossRefGoogle Scholar
  22. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  23. Qi X, Lindup S, Pittaway TS, Allouis S, Gale MD, Devos KM (2001) Development of simple sequence repeat markers from bacterial artificial chromosome without sub-cloning. Biotechniques 31:355–362PubMedGoogle Scholar
  24. Qi X, Pittaway TS, Lindup S, Liu H, Wateran E, Padi FK, Hash CT, Zhu J, Gale MD, Devos KM (2004) An integrated genetic map and new set of simple sequence repeat markers for pearl millet, Pennisetum glaucum. Theor Appl Genet 109:1485–1493PubMedCrossRefGoogle Scholar
  25. Renno JF, Winkel T (1996) Phenology and reproductive effort of cultivated and wild forms of Pennisetum glaucum under experimental conditions in the Sahel: implications for the maintenance of polymorphism in the species. Can J Bot 74:959–964Google Scholar
  26. Robert T, Lespinasse R, Pernès J, Sarr A (1991) Gametophytic competition as influencing gene flow between wild and cultivated forms of pearl millet (Pennisetum typhoides). Genome 34:195–200Google Scholar
  27. Robert T, Luxereau A, Mariac C, Ali K, Allinne C, Bani J, Beidari Y, Bezançon G, Cayeux S, Couturon E, Dedieu V, Moussa D, Sadou M, Seydou M, Seyni O, Tidjani M, Sarr A (2002) Gestion de la diversité en milieu paysan: influence de facteurs anthropiques et des flux de gènes sur la variabilité génétique des formes cultivées et spontanées du mil (Pennisetum glaucum (L.) R. Br.) dans deux localités du Niger. BRG, Actes du 4ème Colloque National «Le patrimoine génétique: la diversité et la ressource». La Châtre, FranceGoogle Scholar
  28. Sarr A, Sandmeier M, Pernès J (1988) Gametophytic competition in pearl millet Pennisetum typhoides (Stapf. and Hubb.). Genome 30:924–929Google Scholar
  29. Sokal R-R, Rohlf F-J (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. W.H. Freemand and Co., New YorkGoogle Scholar
  30. Tostain S (1992) Enzyme diversity in pearl millet (Pennisetum glaucum L.) 3. Wild millet. Theor Appl Genet 83:733–742Google Scholar
  31. Tostain S (1994) Isoenzymatic classification of pearl millet (Pennisetum glaucum, Poaceae) landraces from Niger (West Africa). Pl Syst Evol 193:81–93CrossRefGoogle Scholar
  32. Tostain S, Marchais L (1989) Enzyme diversity in pearl millet (Pennisetum glaucum). 2. Africa and India. Theor Appl Genet 77:634–640CrossRefGoogle Scholar
  33. Tostain S, Riandley MF, Marchais L (1987) Enzyme diversity in pearl millet (Pennisetum glaucum). 1. West Africa. Theor Appl Genet 74:188–193CrossRefGoogle Scholar
  34. Vigouroux Y, Jaqueth JS, Matsuoka Y, Smith OS, Beavis WD, Smith JS, Doebley J (2002) Rate and pattern of mutation at microsatellite loci in maize. Mol Biol Evol 19:1251–1260PubMedGoogle Scholar
  35. Vigouroux Y, Mitchell S, Matsuoka Y, Hamblin M, Kresovich S, Smith JS, Jaqueth J, Smith OS, Doebley J (2005) An analysis of genetic diversity across the maize genome using microsatellites. Genetics 169:1617–1630PubMedCrossRefGoogle Scholar
  36. Vom Brocke K, Christinck A, Weltzien ER, Presterl T, Geiger HH (2003) Farmers’ seed systems and management practices determine pearl millet genetic diversity patterns in semi-arid regions of India. Crop Sci 43:1680–1689CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Cedric Mariac
    • 1
  • Viviane Luong
    • 1
  • Issoufou Kapran
    • 2
  • Aïssata Mamadou
    • 2
  • Fabrice Sagnard
    • 3
  • Monique Deu
    • 3
  • Jacques Chantereau
    • 3
  • Bruno Gerard
    • 4
  • Jupiter Ndjeunga
    • 4
  • Gilles Bezançon
    • 5
  • Jean-Louis Pham
    • 1
  • Yves Vigouroux
    • 1
  1. 1.Institut de Recherche pour le Développement (IRD)MontpellierFrance
  2. 2.Institut National de la Recherche Agronomique du Niger (INRAN)NiameyNiger
  3. 3.Centre International de la Recherche Agronomique pour le Développement (CIRAD)MontpellierFrance
  4. 4.International Center of Research for the Semi-Arid tropics (ICRISAT)NiameyNiger
  5. 5.Institut de Recherche pour le Développement (IRD)NiameyNiger

Personalised recommendations