Theoretical and Applied Genetics

, Volume 113, Issue 8, pp 1515–1527 | Cite as

Genetic analysis of the cultivated potato Solanum tuberosum L. Phureja Group using RAPDs and nuclear SSRs

  • M. Ghislain
  • D. Andrade
  • F. Rodríguez
  • R. J. Hijmans
  • D. M. Spooner
Original Paper


The Solanum tuberosum L. Phureja Group consists of potato landraces widely grown in the Andes from western Venezuela to central Bolivia, and forms an important breeding stock due to their excellent culinary properties and other traits for developing modern varieties. They have been distinguished by short-day adaptation, diploid ploidy (2n = 2x = 24), and lack of tuber dormancy. This nuclear simple sequence repeat (nSSR or microsatellite) study complements a prior random amplified polymorphic DNA (RAPD) study to explore the use of these markers to form a core collection of cultivar groups of potatoes. Like this prior RAPD study, we analyzed 128 accessions of the Phureja Group using nuclear microsatellites (nSSR). Twenty-six of the 128 accessions were invariant for 22 nSSR markers assayed. The nSSR data uncovered 25 unexpected triploid and tetraploid accessions. Chromosome counts of the 102 accessions confirmed these nSSR results and highlighted seven more triploids or tetraploids. Thus, these nSSR markers (except 1) are good indicators of ploidy for diploid potatoes in 92% of the cases. The nSSR and RAPD results: (1) were highly discordant for the remaining 70 accessions that were diploid and variable in nSSR, (2) show the utility of nSSRs to effectively uncover many ploidy variants in cultivated potato, (3) support the use of a cultivar-group (rather than a species) classification of cultivated potato, (4) fail to support a relationship between genetic distance and geographic distance, (5) question the use of any single type of molecular marker to construct core collections.


Core Collection Tuber Dormancy Nuclear Simple Sequence Repeat Polymorphic Index Content nSSR Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Rene Gomez for providing the plant material and associated information used in the present study and Jorge Núñez for his valuable help on SSR data management.


  1. Basigalup DH, Barnes DK, Stucker RE (1995) Development of a core collection for perennial Medicago plant introductions. Crop Sci 35:1163–1168CrossRefGoogle Scholar
  2. Brown AHD (1989) Core collections: a practical approach to genetic resources management. Genome 31:818–824Google Scholar
  3. Brown AHD, Clegg MT (1983) Isozyme assessment of plant genetic resources. In: Rattazzi MC, Scandalios JG, Whitt GS (eds) Isozymes: current topics in biological and medical research, vol 11. Alan R. Liss, New York, NY, pp 285–295Google Scholar
  4. Brus SB, Carney HJ, Huamán Z (1981) Dynamics of Andean potato agriculture. Econ Bot 35:70–88Google Scholar
  5. Chalmers KJ, Waugh R, Sprent JI, Simmons AJ, Powell W (1992) Detection of genetic variation between and within populations of Gliricidia sepium and G. maculata using RAPD markers. Heredity 69:465–472PubMedGoogle Scholar
  6. Chapman CGD (1989) Collection strategies for the wild relatives of field crops. In: Brown ADH, Frankel OH, Marshall DR, Williams JT (eds) The use of plant genetic resources. Cambridge University Press, Cambridge, UK, pp 263–279Google Scholar
  7. Crawford DJ (1990) Plant molecular systematics: macromolecular approaches. Wiley, New YorkGoogle Scholar
  8. del Rio AH, Bamberg JB (2002) Lack of association between genetic and geographical origin characteristics for the wild potato Solanum sucrense. Am J Potato Res 79:335–338CrossRefGoogle Scholar
  9. del Rio AH, Bamberg JB, Huamán Z, Salas A, Vega SE (2001) Association of ecogeographical variables and RAPD marker variation. Wild potato populations of the USA. Crop Sci 41:870–878Google Scholar
  10. Delsney M, Grellet F, Tremousaygue D, Raynal M, Panabieres F (1988) Structure, evolution et expression de l’DNA nucleaire. Bull Soc Bot Fr 135:23–38Google Scholar
  11. Diwan N, Bauchan GR, McIntosh MS (1994) A core collection for the United States annual Medicago germplasm collection. Crop Sci 34:279–285CrossRefGoogle Scholar
  12. Fahima T, Sun GL, Beharav A, Krugman T, Beiles A, Nevo E (1999) RAPD polymorphism of wild emmer wheat populations, Triticum dicoccoides, in Israel. Theor Appl Genet 98:434–447CrossRefGoogle Scholar
  13. Frankel OH (1984) Genetic perspectives of germplasm conservation. In: Arber WK, Llimensee K, Peacock WJ, Starlinger P (eds) Genetic manipulation: impact on man and society. Cambridge University Press, Cambridge, UK, pp 161–170Google Scholar
  14. Frankel OH, Brown AHD (1984) Current plant genetic resources—a critical appraisal. In: Chopra VL, Joshi BC, Sharma RP, Basnal HC (eds) Genetics: new frontiers. In: Proceeding of the fifth International Congress General, vol 4. Oxford and IBH Publishing Co., New Delhi, India, pp3–13Google Scholar
  15. Gallois A, Audran JC, Burus M (1998) Assessment of genetic relationships and population discrimination among Fagus sylvatica L. by RAPD. Theor Appl Genet 97:211–219CrossRefGoogle Scholar
  16. Gepts P (1993) The use of molecular and biochemical markers in crop evolution studies. Evol Biol 27:51–94Google Scholar
  17. Gepts P (1995) Genetic markers and core collections. In: Hodgkin T, Brown AHD, van Hintum TJL, Morales EAV (eds) Core collections of plant genetic resources. Wiley, Chichester, UK, pp127–146Google Scholar
  18. Ghislain M, Zhang D, Fajardo D, Huamán Z, Hijmans R (1999) Marker-assisted sampling of the cultivated Andean potato Solanum phureja collection using RAPD markers. Genet Res Crop Evol 46:547–555CrossRefGoogle Scholar
  19. Ghislain M, Zhang D, Herrera-Montoya M (eds) (1997) Molecular biology laboratory protocols: Plant genotyping. Genetic resources department training manual. CIP, Lima, PeruGoogle Scholar
  20. Ghislain M, Spooner DM, Rodríguez F, Villamón F, Núñez J, Vásquez C, Waugh R, Bonierbale M (2004) Selection of highly informative and user-friendly microsatellites (SSRs) for genotyping of cultivated potato. Theor Appl Genet 108:881–890PubMedCrossRefGoogle Scholar
  21. Grauke LJ, Thompson TE (1995) Evaluation of pecan [C. illinoinensis (Wangenh.) K. Koch] germplasm collection designation of a core subset. HortScience 30:950–954Google Scholar
  22. Grenier C, Bramel-Cox PJ, Hamon P (2001) Core collection of sorghum. I. Stratification based on geographical data. Crop Sci 41:234–240CrossRefGoogle Scholar
  23. Hawkes JG (1990) The potato: evolution, biodiversity and genetic resources. Belhaven Press, LondonGoogle Scholar
  24. Hijmans RJ, Guarino L, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Pl Genet Res Newsl 127:15–19Google Scholar
  25. Holbrook CC, Anderson WF, Pittman RN (1993) Selection of a core collection from the US germplasm collection of pea. Crop Sci 33:859–861CrossRefGoogle Scholar
  26. Huamán Z, Ortiz R, Gómez R (2000) Selecting a Solanum tuberosum subsp. andigena core collection using morphological, geographical, disease and pest descriptors. Am J Potato Res 77:183–190Google Scholar
  27. Huamán Z, Spooner DM (2002) Reclassification of landrace populations of cultivated potatoes (Solanum sect. Petota). Am J Bot 89:947–965CrossRefGoogle Scholar
  28. Johns T, Huamán Z, Ochoa CM, Schmiediche PE (1987) Relationships among wild, weed, and cultivated potatoes in the Solanum ajanhuiri complex. Syst Bot 12:541–552CrossRefGoogle Scholar
  29. Lamboy WF, Yu J, Forsline PL, Weeden NF (1996) Partitioning of allozyme diversity in wild populations of Malus sieversii L. and implications for germplasm collection. J Am Soc Hort Sci 121:982–987Google Scholar
  30. Li Y-C, Korol AB, Fahima T, Nevo E (2004) Microsatellites with genes: structure, function, and evolution. Mol Biol Evol 21:991–1007PubMedCrossRefGoogle Scholar
  31. Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  32. Marshall DR, Brown ADH (1975) Optimum sampling strategies in genetic conservation. In: Frankel OH, Hawkes JG (eds) Crop genetic resources for today and tomorrow. Cambridge University Press, Cambridge, UK, pp 53–80Google Scholar
  33. McGregor CE, van Treuren R, Hoekstra R, van Hintum TJL (2002) Analysis of the wild potato germplasm of the series Acaulia with AFLPs: implications for ex situ conservation. Theor Appl Genet 104:146–156PubMedCrossRefGoogle Scholar
  34. Messmer MM, Melchinger AE, Woodman WL, Lee EA, Lamkey KR (1991) Genetic diversity among progenitors and elite lines from the Iowa Stiff Stalk Synthetic (BSSS) maize populations: comparison of allozyme and RFLP data. Theor Appl Genet 83:97–107CrossRefGoogle Scholar
  35. Milbourne D, Meyer R, Bradshaw JE, Baird E, Bonar N, Provan J, Powell W, Waugh R (1997) Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato. Mol Breed 3:127–136CrossRefGoogle Scholar
  36. Milbourne D, Meyer RC, Collins AJ, Ramsay LD, Gebhardt C, Waugh R (1998) Isolation, characterization and mapping of simple sequence repeat loci in potato. Mol Gen Genet 259:233–245PubMedCrossRefGoogle Scholar
  37. Moser H, Lee M (1994) RFLP variation and genealogical distance, multivariate distance, heterosis, and genetic variation in oats. Theor Appl Genet 87:947–956CrossRefGoogle Scholar
  38. Ochoa CM (1958) Expedición colectora de papas cultivadas a la cuenca del Lago Titicaca. I. Determinación sistemática y número cromosómico del material colectado. Programa Cooperativo de Experimentación Agropecuaria (PCEA), Ministerio de Agricultura, Lima, PerúGoogle Scholar
  39. Ochoa CM (1990) The potatoes of South America: Bolivia, Cambridge University Press, Cambridge, UKGoogle Scholar
  40. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalsky A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238CrossRefGoogle Scholar
  41. Provan J, Powell W, Waugh R (1996) Microsatellite analysis of relationships within cultivated potato (Solanum tuberosum). Theor Appl Genet 92:1078–1084CrossRefGoogle Scholar
  42. Rohlf FJ (1993) NTSYS-pc, Numerical taxonomy and multivariate system. Exeter Publishing, Ltd., New York, NY, USAGoogle Scholar
  43. Russell JR, Fuller JD, Macaulay M, Hatz BG, Jahoor A, Powell W, Waugh R (1997) Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet 95:714–722CrossRefGoogle Scholar
  44. Skroch P, Nienhuis J, Beebe S, Tohme J, Pedraza F (1998) Comparison of Mexican common bean (Phaseolus vulgaris L.) core and reserve collections. Crop Sci 38:488–496CrossRefGoogle Scholar
  45. Smith BW (1974) Cytological evidence. In: Radford AE, Dickison WC, Massey JR, Bell CR (eds) Vascular plant systematics. Harper and Row, New York, pp237–258Google Scholar
  46. Smith JSC, Chin ECL, Shu L, Smith OS, Wall SJ, Senior ML, Mitchell SE, Kresovich S, Ziegle J (1997) An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theor Appl Genet 95:163–173CrossRefGoogle Scholar
  47. Smith OS, Smith JSC, Bowen SL, Tenborg RA (1992) Numbers of RFLP probes necessary to show associations between lines. Maize Genet Coop News Lett 66:66Google Scholar
  48. Spooner DM, McLean K, Ramsay G, Waugh R, Bryan GJ (2005a) A single domestication for potato based on multilocus AFLP genotyping. Proc Natl Acad Sci USA 120:14694–14699CrossRefGoogle Scholar
  49. Spooner DM, Tivang J, Nienhuis J, Miller JT, Douches DS, Contreras-MA (1995) Comparison of four molecular markers in measuring relationships among the wild potato relatives Solanum section Etuberosum (subgenus Potatoe). Theor Appl Genet 92:532–540CrossRefGoogle Scholar
  50. Spooner DM, van Treuren RR, de Vicente MC (2005b) Molecular markers for germplasm and genebank management. Tech Bull 10. International Plant Genetic Resources Institute, Rome, Italy, pp1–136Google Scholar
  51. Sun GL, Diaz O, Salomon B, von Bothmer R (1999) Genetic diversity in Elymus caninus as revealed by isozyme, RAPD, and microsatellite markers. Genome 42:420–431PubMedCrossRefGoogle Scholar
  52. Sun GL, Salomon B, von Bothmer R (1997) Analysis of tetraploid Elymus species using wheat microsatellites markers and RAPD markers. Genome 40:806–814PubMedGoogle Scholar
  53. Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Biotechnology 7:257–260CrossRefGoogle Scholar
  54. Tautz D, Rentz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:4127–4138PubMedGoogle Scholar
  55. Tautz D, Trick M, Dover GA (1986) Cryptic simplicity in DNA is a major source of genetic variation. Nature 322:652–656PubMedCrossRefGoogle Scholar
  56. Tinker NA, Fortin MG, Mather DE (1993) Random amplified polymorphic DNA and pedigree relationships in spring barley. Theor Appl Genet 85:976–984CrossRefGoogle Scholar
  57. Van Hintum TJL, Haalman D (1994) Pedigree analysis for composing a core collection of modern cultivars, with examples from barley (Hordeum vulgare s. lat.). Theor Appl Genet 88:70–74Google Scholar
  58. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedGoogle Scholar
  59. Watanabe K, Peloquin SJ (1989) Occurrence of 2n pollen and ps gene frequencies in cultivated groups and their related wild species in the tuber-bearing Solanums. Theor Appl Genet 78:329–336CrossRefGoogle Scholar
  60. Watanabe K, Peloquin SJ (1991) The occurrence and frequency of 2n pollen in 2x, 4x, and 6x wild, tuber-bearing Solanum species from Mexico, and Central and South America. Theor Appl Genet 82:621–626CrossRefGoogle Scholar
  61. Wendel JF, Doyle JJ (1998) Phylogenetic incongruence: window into genome history and molecular evolution. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II: DNA sequencing. Kluwer Academic Publishers, Boston, pp 265–296Google Scholar
  62. Wieczorek J, Guo Q, Hijmans RJ (2004) The point-radius method for georeferencing locality descriptions and calculating associated uncertainty. Inter J Geogr Inform Sci 18:745–767CrossRefGoogle Scholar
  63. Williams J, Kubelik A, Livak K, Rafalski JA, Tingey S (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535PubMedGoogle Scholar
  64. Yap I, Nelson RJ (1996) WinBoot: a program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms. IRRI discussion paper series No. 14, International Rice Research Institute, Manila, PhilippinesGoogle Scholar
  65. Zimmerer K (1991) The regional biogeography of native potato cultivars in highland Peru. J Biogeogr 18:165–178CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • M. Ghislain
    • 1
  • D. Andrade
    • 1
  • F. Rodríguez
    • 1
    • 3
  • R. J. Hijmans
    • 2
  • D. M. Spooner
    • 3
  1. 1.International Potato CenterLimaPeru
  2. 2.International Rice Research InstituteLagunaPhilippines
  3. 3.USDA, Vegetable Crops Research Unit, USDA-ARS, Department of HorticultureUniversity of WisconsinMadisonUSA

Personalised recommendations