Theoretical and Applied Genetics

, Volume 113, Issue 7, pp 1271–1281

Development and genetic mapping of sequence-tagged microsatellites (STMs) in bread wheat (Triticum aestivum L.)

  • M. J. Hayden
  • P. Stephenson
  • A. M. Logojan
  • D. Khatkar
  • C. Rogers
  • J. Elsden
  • R. M. D. Koebner
  • J. W. Snape
  • P. J. Sharp
Original paper

Abstract

The density of SSRs on the published genetic map of bread wheat (Triticum aestivum L.) has steadily increased over the last few years. This has improved the efficiency of marker-assisted breeding and certain types of genetic research by providing more choice in the quality of SSRs and a greater chance of finding polymorphic markers in any cross for a chromosomal region of interest. Increased SSR density on the published wheat genetic map will further enhance breeding and research efforts. Here, sequence-tagged microsatellite profiling (STMP) is demonstrated as a rapid technique for the economical development of anonymous genomic SSRs to increase marker density on the wheat genetic map. A total of 684 polymorphic sequence-tagged microsatellites (STMs) were developed, and 380 were genetically mapped in three mapping populations, with 296 being mapped in the International Triticeae Mapping Initiative W7984 × Opata85 recombinant inbred cross. Across the three populations, a total of 479 STM loci were mapped. Several technological advantages of STMs over conventional SSRs were also observed. These include reduced marker deployment costs for fluorescent-based SSR analysis, and increased genotyping throughput by more efficient electrophoretic separation of STMs and a high amenability to multiplex PCR.

Supplementary material

122_2006_381_MOESM1_ESM.rtf (53 kb)
Supplementary material
122_2006_381_MOESM2_ESM.rtf (1.1 mb)
Supplementary material

References

  1. Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes H, Sharp P, Vaughan P, Rathmell W, Huttner E, Kilian A (2006) Diversity Arrays Technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet (in press)Google Scholar
  2. Anderson JA, Churchill GA, Autrique EJ, Tanksley SD, Sorrells ME (1993) Optimising parental selection for genetic linkage maps. Genome 36:181–186Google Scholar
  3. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218Google Scholar
  4. Bryan GK, Collins AJ, Stephenson P, Orry A, Smith JB, Gale MD (1997) Isolation and characterisation of microsatellites from hexaploid bread wheat. Theor Appl Genet 94:557–563CrossRefGoogle Scholar
  5. Chalmers KJ, Campbell AW, Kretschmer J, Karakousis A, Henschke PH, Pierens S, Harker N, Pallotta M, Cornish GB, Shariflou MR, Rampling LR, McLauchlan A, Daggard G, Sharp PJ, Holton TA, Sutherland MW, Appels R, Langridge P (2001) Construction of three linkage maps in bread wheat, Triticum aestivum. Aust J Agric Res 52:1089–1119CrossRefGoogle Scholar
  6. Cregan PB, Mudge J, Fickus EW, Marek LF, Danesh D, Denny R, Shoemaker RC, Matthews BF, Jarvik T, Young ND (1998) Targeted isolation of simple sequence repeat markers through the use of bacterial artificial chromosomes. Theor Appl Genet 98:919–928CrossRefGoogle Scholar
  7. Davila JA, Loarce Y, Ferrer E (1999) Molecular characterisation and genetic mapping of random amplified microsatellite polymorphism in barley. Theor Appl Genet 98:265–273CrossRefGoogle Scholar
  8. Devos KM, Atkinson MD, Cinoy CN, Liu C, Gale MD (1992) RFLP based genetic map of homoeologous group 3 chromosomes of wheat and rye. Theor Appl Genet 83:931–939CrossRefGoogle Scholar
  9. Edwards KJ, Barker JHA, Daly A, Jones C, Karp A (1996) Microsatellite libraries enriched for several microsatellite sequences in plants. Biotechniques 20:759–760Google Scholar
  10. Elnifro EM, Ashshi AM, Cooper RJ, Klapper PE (2000) Multiplex PCR: optimisation and application in diagnostic virology. Clin Microbiol Rev 13:559–570PubMedCrossRefGoogle Scholar
  11. Engels WR (2004) Amplify v3.1.4. http://www.engels.genetics.wisc.edu/amplify/
  12. Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W (2001) Assessment of genotypic variation among cultivated durum wheat based on EST-SSRs and genomic SSRs. Euphytica 119:39–43CrossRefGoogle Scholar
  13. Fisher PJ, Richardson TE, Gardner RC (1998) Characterisation of single- and multi-copy microsatellites from Pinus radiata. Theor Appl Genet 96:969–979CrossRefGoogle Scholar
  14. Hayden MJ, Sharp PJ (2001a) Targeted development of informative microsatellite (SSR) markers. Nucleic Acids Res 29:e44CrossRefGoogle Scholar
  15. Hayden MJ, Sharp PJ (2001b) Sequence tagged microsatellite profiling (STMP): a rapid technique for developing SSR markers. Nucleic Acids Res 29:e43CrossRefGoogle Scholar
  16. Hayden MJ, Stephenson P, Logojan AM, Khatkar D, Rogers C, Koebner RMD, Snape JW, Sharp PJ (2004) A new approach to extending the wheat marker pool by anchored PCR amplification of compound SSRs. Theor Appl Genet 108:733–742PubMedCrossRefGoogle Scholar
  17. Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25PubMedCrossRefGoogle Scholar
  18. Jian SM, Brar DS, Ahloowalia BS (2002) Molecular techniques in crop improvement. Kluwer, DordrechtGoogle Scholar
  19. Kammholz SJ, Campbell AW, Sutherland MW, Hollamby GJ, Martin PJ, Eastwood RF, Barclay I, Wilson RE, Brennan PS, Sheppard JA (2001) Establishment and characterisation of wheat genetic mapping populations. Aust J Agric Res 52:1079–1088CrossRefGoogle Scholar
  20. Kim HS, Ward R (2000) Patterns of RFLP-based genetic diversity in germplasm pools of common wheat with different geographical or breeding program origins. Euphytica 115:197–208CrossRefGoogle Scholar
  21. Koebner RMD, Powell W, Donini P (2001) The contribution of current and forthcoming DNA molecular marker technologies to wheat and barley genetics and breeding. Plant Breed Rev 21:181–220Google Scholar
  22. Kunzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412PubMedGoogle Scholar
  23. Lagercrantz E, Ellegren H, Andersson L (1993) The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Res 21:1111–1115PubMedGoogle Scholar
  24. Leigh F, Lea V, Law J, Wolters P, Powell W, Donini P (2003) Assessment of EST- and genomic microsatellite markers for variety discrimination and genetic diversity studies in wheat. Euphytica 133:359–366CrossRefGoogle Scholar
  25. Manly KF (1998) Map Manager QTX. http://www.mapmgr.roswellpark.org/mmQTX.html
  26. Marino CL, Nelson JC, Lu YH, Sorrells ME, Leroy P, Tuleen NA, Lopes CR, Hart GE (1996) Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell). Genome 39:359–366Google Scholar
  27. Nelson JC, Sorrells ME, van Deynze AE, Lu YH, Atkinson M, Bernard M, Leroy P, Faris JD, Anderson JA (1995a) Molecular mapping of wheat: major genes and rearrangements in homologous groups 4, 5, and 7. Genetics 141:721–731Google Scholar
  28. Nelson JC, van Deynze AE, Autrique E, Sorrells ME, Lu YH, Merlino M, Atkinson M, Leroy P (1995b) Molecular mapping of wheat, homologous group 2. Genome 38:516–524Google Scholar
  29. Nelson JC, van Deynze AE, Autrique E, Sorrells ME, Lu YH, Negre S, Bernard M, Leroy P (1995c) Molecular mapping of wheat, homologous group 3. Genome 38:525–533Google Scholar
  30. Paull JG, Chalmer KJ, Karakousis A, Kretschmer JM, Manning S, Langridge P (1998) Genetic diversity in Australian wheat varieties and breeding material based on RFLP data. Theor Appl Genet 96:435–446CrossRefGoogle Scholar
  31. Peng JH, Lapitan NLV (2004) Characterisation of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct Integr Genomics 5:80–96CrossRefGoogle Scholar
  32. Pestova E, Ganal MW, Roder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697CrossRefGoogle Scholar
  33. Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–221Google Scholar
  34. Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD, Akhunov ED, Dvoral J, Linkiewicz AM, Ratnarisi A, Dubcovsky J, Bermudez-Kandiania CE, Greene RA, Kantety R, La Rota CM, Munkvold JD, Sorrells SF, Sorrells ME, Dilbirligi M, Sidhu D, Erayman M, Randhawa HS, Sandhu D, Bondareva SN, Gill KS, Mahmoud AA, Ma XF, Miftahudin A, Gustafson JP, Conley EJ, Nduati V, Gonzalez-Hernandez JL, Anderson JA, Peng JH, Lapitan NLV, Hossain KG, Kalavacharla V, Kianian SF, Pathan MS, Zhang DS, Nguyen HT, Choi DW, Fenton RD, Close TJ, McGuire PE, Qualset CO, Gill BS (2004) A chromosome bin map of 16,000 EST loci and distribution of genes among the three genomes of polyploidy wheat. Genetics 168:701–712PubMedCrossRefGoogle Scholar
  35. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  36. Smulders MJM, Bredemeijer G, Rus-Korekaas W, Arens P, Vosman B (1997) Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 97:264–272CrossRefGoogle Scholar
  37. Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114PubMedCrossRefGoogle Scholar
  38. Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill GS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560PubMedCrossRefGoogle Scholar
  39. Stephenson P, Bryan G, Kirby K, Collins A, Devos K, Busso C, Gale M (1998) Fifty new microsatellite loci for the wheat genetic map. Theor Appl Genet 94:946–949CrossRefGoogle Scholar
  40. Taramino G, Tingey S (1996) Simple sequence repeats for germplasm analysis and genetic variation. Genome 39:277–287PubMedGoogle Scholar
  41. Ramsay L, Macaulay M, Ivanissevich SD, Maclean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal MW, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005PubMedGoogle Scholar
  42. Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedGoogle Scholar
  43. Van Deynze AE, Dubcovsky J, Gill KS, Nelson JC, Sorrells ME, Dvorak J, Gill BS, Lagudah ES, McCouch SR, Appels R (1995) Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38:45–59Google Scholar
  44. Van Ooijen JW, Voorrips RE (2001) JoinMap 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The NetherlandsGoogle Scholar
  45. Varshney RK, Thiel T, Stein N, Langridge P, Graner A (2002) In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol Biol Lett 7:537–546PubMedGoogle Scholar
  46. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487PubMedGoogle Scholar
  47. Zhang LY, Bernard M, Leroy P, Feuillet C, Sourdille P (2005) High transferability of bread wheat EST-derived SSRs to other cereals. Theor Appl Genet 111:677–687PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • M. J. Hayden
    • 1
    • 2
  • P. Stephenson
    • 3
  • A. M. Logojan
    • 3
  • D. Khatkar
    • 4
  • C. Rogers
    • 3
  • J. Elsden
    • 1
  • R. M. D. Koebner
    • 3
  • J. W. Snape
    • 3
  • P. J. Sharp
    • 4
    • 5
  1. 1.Plant Functional Genomics CenterUniversity of AdelaideUrrbraeAustralia
  2. 2.Molecular Plant Breeding CRCGlen OsmondAustralia
  3. 3.Crop Genetics DepartmentJohn Innes CentreNorwichUK
  4. 4.Plant Breeding InstituteUniversity of SydneyCamdenAustralia
  5. 5.Value Added Wheat CRCNorth RydeAustralia

Personalised recommendations