Advertisement

Theoretical and Applied Genetics

, Volume 113, Issue 8, pp 1409–1420 | Cite as

Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome

  • Mona Akbari
  • Peter Wenzl
  • Vanessa Caig
  • Jason Carling
  • Ling Xia
  • Shiying Yang
  • Grzegorz Uszynski
  • Volker Mohler
  • Anke Lehmensiek
  • Haydn Kuchel
  • Mathew J. Hayden
  • Neil Howes
  • Peter Sharp
  • Peter Vaughan
  • Bill Rathmell
  • Eric Huttner
  • Andrzej Kilian
Original Paper

Abstract

Despite a substantial investment in the development of panels of single nucleotide polymorphism (SNP) markers, the simple sequence repeat (SSR) technology with a limited multiplexing capability remains a standard, even for applications requiring whole-genome information. Diversity arrays technology (DArT) types hundreds to thousands of genomic loci in parallel, as previously demonstrated in a number diploid plant species. Here we show that DArT performs similarly well for the hexaploid genome of bread wheat (Triticum aestivum L.). The methodology previously used to generate DArT fingerprints of barley also generated a large number of high-quality markers in wheat (99.8% allele-calling concordance and approximately 95% call rate). The genetic relationships among bread wheat cultivars revealed by DArT coincided with knowledge generated with other methods, and even closely related cultivars could be distinguished. To verify the Mendelian behaviour of DArT markers, we typed a set of 90 Cranbrook × Halberd doubled haploid lines for which a framework (FW) map comprising a total of 339 SSR, restriction fragment length polymorphism (RFLP) and amplified fragment length polymorphism (AFLP) markers was available. We added an equal number of DArT markers to this data set and also incorporated 71 sequence tagged microsatellite (STM) markers. A comparison of logarithm of the odds (LOD) scores, call rates and the degree of genome coverage indicated that the quality and information content of the DArT data set was comparable to that of the combined SSR/RFLP/AFLP data set of the FW map.

Keywords

Restriction Fragment Length Polymorphism Amplify Fragment Length Polymorphism Wheat Cultivar Doubled Haploid Call Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank the Australian Grains Research and Development Cooperation (GRDC; www.grdc.com.au) for financial support. Triticarte P/L (www.triticarte.com) is a joint venture of Diversity Arrays Technology P/L (DArT P/L; www.DiversityArrays.com) and the Value Added Wheat Cooperative Research Centre (VAWCRC; www.wheat-research.com.au). The Triticarte/DArT team thank their colleagues at CAMBIA (www.cambia.org) for their friendship and collaborative spirit as well as many interesting discussions during the period when CAMBIA was sharing laboratory facilities with Triticarte/DArT. We also thank two anonymous reviewers for their detailed comments, which have helped to improve the manuscript.

Supplementary material

122_2006_365_MOESM1_ESM.doc (75 kb)
Supplementary material
122_2006_365_MOESM2_ESM.xls (35 kb)
Supplementary material
122_2006_365_MOESM3_ESM.xls (412 kb)
Supplementary material
122_2006_365_MOESM4_ESM.xls (583 kb)
Supplementary material
122_2006_365_MOESM5_ESM.doc (38 kb)
Supplementary material
122_2006_365_MOESM6_ESM.doc (222 kb)
Supplementary material

References

  1. Anderson MJ (2003) PCO: a FORTRAN computer program for principal component analysis. Department of Statistics, University of Auckland, Auckland, New ZealandGoogle Scholar
  2. Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273PubMedCrossRefGoogle Scholar
  3. Botstein D, White R, Skolnick M, Davis R (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedGoogle Scholar
  4. Bryan GJ, Collins AJ, Stephenson P, Orry A, Smith JB, Gale MD (1997) Isolation and characterisation of microsatellites from hexaploid bread wheat. Theor Appl Genet 94:557–563CrossRefGoogle Scholar
  5. Caldwell KS, Dvorak J, Lagudah ES, Akhunov E, Luo MC, Wolters P, Powell W (2004) Sequence polymorphism in polyploid wheat and their D-genome diploid ancestor. Genetics 167:941–947PubMedCrossRefGoogle Scholar
  6. Chalmers KJ, Campbell AW, Kretschmer J, Karakousis A, Henschke PH, Pierens S, Harker N, Pallotta M, Cornish GB, Shariflou MR, Rampling LR, McLauchlan A, Daggard G, Sharp PJ, Holton TA, Sutherland MW, Appels R, Langridge P (2001) Construction of three linkage maps in bread wheat. Triticum aestivum. Aust J Agric Res 52:1089–1119CrossRefGoogle Scholar
  7. Chee M, Yang R, Hubbell E, Berno A, Huang XC, Stern D, Winkler J, Lockhart DJ, Morris MS, Fodor SPA (1996) Accessing genetic information with high-density DNA arrays. Science 274:610–614PubMedCrossRefGoogle Scholar
  8. Cohen AC Jr (1960) Estimating the parameter in a conditional Poisson distribution. Biometrics 16:203–211CrossRefGoogle Scholar
  9. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:1–15Google Scholar
  10. Dreisigacker S, Zhang P, Warburton ML, Van Ginkel M, Hoisington D, Bohn M, Melchinger AE (2004) SSR and pedigree analyses of genetic diversity among CIMMYT wheat lines targeted to different megaenvironments. Crop Sci 44:381–388CrossRefGoogle Scholar
  11. Feuillet C, Keller B (2002) Comparative genomics in the grass family: molecular characterisation of grass genome structure and evolution. Ann Bot (Lond) 89:3–10CrossRefGoogle Scholar
  12. Hayden MJ, Good G, Sharp PJ (2002) Sequence tagged microsatellite profiling (STMP): improved isolation of DNA sequence flanking target SSRs. Nucleic Acids Res 30:e129PubMedCrossRefGoogle Scholar
  13. Hayden MJ, Stephenson P, Logojan AM, Khatkar D, Rogers C, Koebner RMD, Snape JW, Sharp PJ (2004) A new approach to extending the wheat marker pool by anchored PCR amplification of compound SSRs. Theor Appl Genet 108:733–742PubMedCrossRefGoogle Scholar
  14. Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25PubMedCrossRefGoogle Scholar
  15. Kammholz SJ, Campbell AW, Sutherland MW, Hollamby GJ, Martin PJ, Eastwood RF, Barclay I, Wilson RE, Brennan PS, Sheppard JA (2001) Establishment and characterisation of wheat genetic mapping populations. Aust J Agric Res 52:1079–1088CrossRefGoogle Scholar
  16. Kilian A, Huttner E, Wenzl P, Jaccoud D, Carling J, Caig V, Evers M, Heller-Uszynska, Cayla C, Patarapuwadol S, Xia L, Yang S, Thomson B (2005) The fast and the cheap: SNP and DArT-based whole genome profiling for crop improvement. In: Tuberosa R, Phillips RL, Gale M (eds) Proceedings of the international congress “In the wake of the double helix: from the green revolution to the gene revolution”, 27–31 May, 2003, Avenue Media, Bologna, Italy, pp 443–461Google Scholar
  17. Lalouel JM (1977) Linkage mapping from pair-wise recombination data. Heredity 38:61–77PubMedGoogle Scholar
  18. Langridge P, Lagudah ES, Holton TA, Appels R, Sharp PJ, Chalmers KJ (2001) Trends in genetic and genome analysis in wheat: a review. Aust J Agric Res 52:1043–1077CrossRefGoogle Scholar
  19. Lehmensiek A, Eckermann PJ, Verbyla AP, Appels R, Sutherland MW, Daggard GE (2005) Curation of wheat maps to improve map accuracy and QTL detection. Aust J Agric Res 56:1347–1354Google Scholar
  20. Lezar S, Myburg AA, Berger DK, Wingfield MJ, Wingfield BD (2004) Development and assessment of microarray-based DNA fingerprinting in Eucalyptus grandis. Theor Appl Genet 109:1329–1336PubMedCrossRefGoogle Scholar
  21. Liu BH, Knapp SJ (1990) GMENDEL: a program for Mendelian segregation and linkage analysis of individual or multiple progeny populations using log-likelihood ratios. J Hered 81:407–418Google Scholar
  22. McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO, Melbourne, Vic., AustraliaGoogle Scholar
  23. Mochida K, Yamazaki Y, Ogihara Y (2004) Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags. Mol Genet Genomics 270:371–377CrossRefGoogle Scholar
  24. van Ooijen JW, Voorrips RE (2001) Joinmap 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The NetherlandsGoogle Scholar
  25. van Os H, Stam P, Visser RGF, van Eck HJ (2005) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112:30–40PubMedCrossRefGoogle Scholar
  26. Parker GD, Fox PN, Langridge P, Chalmers K, Whan B, Ganter PF (2002) Genetic diversity within Australian wheat breeding programs based on molecular and pedigree data. Euphytica 124:293–306CrossRefGoogle Scholar
  27. Paull JG, Chalmers KJ, Karakousis A, Kretschmer JM, Manning S, Langridge P (1998) Genetic diversity in Australian wheat varieties and breeding material based on RFLP data. Theor Appl Genet 96:435–446CrossRefGoogle Scholar
  28. Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697PubMedCrossRefGoogle Scholar
  29. Roussel V, Leisova L, Exbrayat F, Stehno Z, Balfourier F (2005) SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000. Theor Appl Genet 111:162–170PubMedCrossRefGoogle Scholar
  30. Schut JW, Qi X, Stam P (1997) Association between relationship measures based on AFLP markers, pedigree data and morphological traits in barley. Theor Appl Genet 95:1161–1168CrossRefGoogle Scholar
  31. Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744CrossRefGoogle Scholar
  32. Tanksley SD, Ganal MW, Prince JP, de Vicente MC (1992) High density molecular linkage maps of the tomato and potato genomes: biological inferences and practical applications. Genetics 132:1141–1160PubMedGoogle Scholar
  33. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedCrossRefGoogle Scholar
  34. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Fritjers A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedGoogle Scholar
  35. Vuylsteke M, Mank R, Antonise R, Bastiaans E, Senior ML, Stuber CW, Melchinger AE, Lübberstedt T, Xia XC, Stam P, Zabeau M, Kuiper M (1999) Two high-density AFLP linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor Appl Genet 99:921–935CrossRefGoogle Scholar
  36. Weber J, May P (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388–396PubMedGoogle Scholar
  37. Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920PubMedCrossRefGoogle Scholar
  38. Williams J, Kubelik A, Livak K, Rafalski J, Tingey S (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535PubMedGoogle Scholar
  39. Wittenberg AHJ, van der Lee T, Cayla C, Kilian A, Visser RGF, Schouten HJ (2005) Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana. Mol Genet Genomics 274:30–39PubMedCrossRefGoogle Scholar
  40. Xia L, Peng K, Yang S, Wenzl P, de Vicente C, Fregene M, Kilian A (2005) DArT for high-throughput genotyping of cassava (Manihot esculenta) and its wild relatives. Theor Appl Genet 110:1092–1098PubMedCrossRefGoogle Scholar
  41. Yang S, Pang W, Harper J, Carling J, Wenzl P, Huttner E, Zong X, Kilian A (2006) Low level of genetic diversity in cultivated pigeonpea compared to its wild relatives is revealed by diversity arrays technology (DArT). Theor Appl Genet 113:585–595PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Mona Akbari
    • 1
  • Peter Wenzl
    • 1
    • 2
  • Vanessa Caig
    • 1
    • 2
  • Jason Carling
    • 1
    • 2
  • Ling Xia
    • 1
    • 2
  • Shiying Yang
    • 1
    • 2
  • Grzegorz Uszynski
    • 1
    • 2
  • Volker Mohler
    • 3
    • 6
  • Anke Lehmensiek
    • 4
  • Haydn Kuchel
    • 5
  • Mathew J. Hayden
    • 6
    • 7
  • Neil Howes
    • 1
    • 6
  • Peter Sharp
    • 1
    • 6
  • Peter Vaughan
    • 1
    • 6
  • Bill Rathmell
    • 1
    • 6
  • Eric Huttner
    • 1
    • 2
  • Andrzej Kilian
    • 1
    • 2
  1. 1.Triticarte P/LCanberraAustralia
  2. 2.Diversity Arrays P/LCanberraAustralia
  3. 3.Department of Plant BreedingTechnical University MunichFreisingGermany
  4. 4.Faculty of SciencesUniversity of Southern QueenslandToowoombaAustralia
  5. 5.Australian Grain Technologies P/LUniversity of AdelaideRoseworthyAustralia
  6. 6.Value Added Wheat Cooperative Research Centre, Plant Breeding InstituteUniversity of SydneyCamdenAustralia
  7. 7.Molecular Plant Breeding Cooperative Research CentreUniversity of AdelaideGlen OsmondAustralia

Personalised recommendations