Theoretical and Applied Genetics

, Volume 113, Issue 8, pp 1409–1420

Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome

  • Mona Akbari
  • Peter Wenzl
  • Vanessa Caig
  • Jason Carling
  • Ling Xia
  • Shiying Yang
  • Grzegorz Uszynski
  • Volker Mohler
  • Anke Lehmensiek
  • Haydn Kuchel
  • Mathew J. Hayden
  • Neil Howes
  • Peter Sharp
  • Peter Vaughan
  • Bill Rathmell
  • Eric Huttner
  • Andrzej Kilian
Original Paper

DOI: 10.1007/s00122-006-0365-4

Cite this article as:
Akbari, M., Wenzl, P., Caig, V. et al. Theor Appl Genet (2006) 113: 1409. doi:10.1007/s00122-006-0365-4

Abstract

Despite a substantial investment in the development of panels of single nucleotide polymorphism (SNP) markers, the simple sequence repeat (SSR) technology with a limited multiplexing capability remains a standard, even for applications requiring whole-genome information. Diversity arrays technology (DArT) types hundreds to thousands of genomic loci in parallel, as previously demonstrated in a number diploid plant species. Here we show that DArT performs similarly well for the hexaploid genome of bread wheat (Triticum aestivum L.). The methodology previously used to generate DArT fingerprints of barley also generated a large number of high-quality markers in wheat (99.8% allele-calling concordance and approximately 95% call rate). The genetic relationships among bread wheat cultivars revealed by DArT coincided with knowledge generated with other methods, and even closely related cultivars could be distinguished. To verify the Mendelian behaviour of DArT markers, we typed a set of 90 Cranbrook × Halberd doubled haploid lines for which a framework (FW) map comprising a total of 339 SSR, restriction fragment length polymorphism (RFLP) and amplified fragment length polymorphism (AFLP) markers was available. We added an equal number of DArT markers to this data set and also incorporated 71 sequence tagged microsatellite (STM) markers. A comparison of logarithm of the odds (LOD) scores, call rates and the degree of genome coverage indicated that the quality and information content of the DArT data set was comparable to that of the combined SSR/RFLP/AFLP data set of the FW map.

Supplementary material

122_2006_365_MOESM1_ESM.doc (75 kb)
Supplementary material
122_2006_365_MOESM2_ESM.xls (35 kb)
Supplementary material
122_2006_365_MOESM3_ESM.xls (412 kb)
Supplementary material
122_2006_365_MOESM4_ESM.xls (583 kb)
Supplementary material
122_2006_365_MOESM5_ESM.doc (38 kb)
Supplementary material
122_2006_365_MOESM6_ESM.doc (222 kb)
Supplementary material

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Mona Akbari
    • 1
  • Peter Wenzl
    • 1
    • 2
  • Vanessa Caig
    • 1
    • 2
  • Jason Carling
    • 1
    • 2
  • Ling Xia
    • 1
    • 2
  • Shiying Yang
    • 1
    • 2
  • Grzegorz Uszynski
    • 1
    • 2
  • Volker Mohler
    • 3
    • 6
  • Anke Lehmensiek
    • 4
  • Haydn Kuchel
    • 5
  • Mathew J. Hayden
    • 6
    • 7
  • Neil Howes
    • 1
    • 6
  • Peter Sharp
    • 1
    • 6
  • Peter Vaughan
    • 1
    • 6
  • Bill Rathmell
    • 1
    • 6
  • Eric Huttner
    • 1
    • 2
  • Andrzej Kilian
    • 1
    • 2
  1. 1.Triticarte P/LCanberraAustralia
  2. 2.Diversity Arrays P/LCanberraAustralia
  3. 3.Department of Plant BreedingTechnical University MunichFreisingGermany
  4. 4.Faculty of SciencesUniversity of Southern QueenslandToowoombaAustralia
  5. 5.Australian Grain Technologies P/LUniversity of AdelaideRoseworthyAustralia
  6. 6.Value Added Wheat Cooperative Research Centre, Plant Breeding InstituteUniversity of SydneyCamdenAustralia
  7. 7.Molecular Plant Breeding Cooperative Research CentreUniversity of AdelaideGlen OsmondAustralia

Personalised recommendations