Theoretical and Applied Genetics

, Volume 113, Issue 5, pp 885–894 | Cite as

Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon

  • Xiaobo Xie
  • Mi-Hee Song
  • Fengxue Jin
  • Sang-Nag Ahn
  • Jung-Pil Suh
  • Hung-Goo Hwang
  • S. R. McCouch
Original Paper


A quantitative trait locus (QTL) for grain weight (GW) was detected near SSR marker RM210 on chromosome 8 in backcross populations derived from a cross between the Korean japonica cultivar Hwaseongbyeo and Oryza rufipogon (IRGC 105491). The O. rufipogon allele increased GW in the Hwaseongbyeo background despite the fact that O. rufipogon was the small-seeded parent. Using sister BC3F3 near-isogenic lines (NILs), gw8.1 was validated and mapped to a 6.1 cM region in the interval between RM42 and RM210 (P≤0.0001). Substitution mapping with eight BC3F4 sub-NILs further narrowed the interval containing gw8.1 to about 306.4 kb between markers RM23201.CNR151 and RM30000.CNR99. A yield trial using homozygous BC3F4 sister sub-NILs and the Hwaseongbyeo recurrent parent indicated that the NIL carrying an O. rufipogon chromosome segment across the entire gw8.1 target region out-yielded its sister NIL (containing Hwaseongbyeo chromosome in the RM42–RM210 interval) by 9% (P=0.029). The higher-yielding NIL produced 19.3% more grain than the Hwaseongbyeo recurrent parent (P=0.018). Analysis of a BC3F4 NIL indicated that the variation for GW is associated with variation in grain shape, specifically grain length. The locus, gw8.1 is of particular interest because of its independence from undesirable height and grain quality traits. SSR markers tightly linked to the GW QTL will facilitate cloning of the gene underlying this QTL as well as marker-assisted selection for variation in GW in an applied breeding program.


Quantitative Trait Locus Quantitative Trait Locus Analysis Amylose Content Grain Weight Genotypic Classis 



This study was supported by grants from the Bio Green 21 project of the Rural Development Administration and from the Crop Functional Genomics Center of the 21st Century Frontier Research Program (Project code no. CG3112) funded by the Ministry of Science and Technology, Republic of Korea.


  1. Brondani C, Rangel PHN, Brondani RPV, Ferreira ME (2002) QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers. Theor Appl Genet 104:1192–1203PubMedCrossRefGoogle Scholar
  2. Chen X, Temnykh S, Xu Y, Cho YG, McCouch SR (1997) Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theor Appl Genet 95:553–567CrossRefGoogle Scholar
  3. Cho YC, Suh JP, Choi IS, Hong HC, Baek MK, Kang KH, Kim YG, Ahn SN, Choi HC, Hwang HG, Moon HP (2003) QTLs analysis of yield and its related traits in wild rice relative Oryza rufipogon. Treat Crop Res Korea 4:19–29Google Scholar
  4. Cui KH, Peng SB, Xing YZ, Yu SB, Xu CG, Zhang Q (2003) Molecular dissection of the genetic relationships of source, sink and transport tissue with yield traits in rice. Theor Appl Genet 106:649–658PubMedGoogle Scholar
  5. Doganlar S, Frary A, Tanksley SD (2000) The genetic basis of seed-weight variation: tomato as a model system. Theor Appl Genet 100:1267–1273CrossRefGoogle Scholar
  6. Elouafi I, Nachit MM (2004) A genetic linkage map of the Durum × Triticum dicoccoides backcross population based on SSRs and AFLP markers, and QTL analysis for milling traits. Theor Appl Genet 108:401–413PubMedCrossRefGoogle Scholar
  7. Eshed Y, Zamir D (1995) An introgression-line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTLs. Genetics 141:1147–1162PubMedGoogle Scholar
  8. Huang XQ, Cöster H, Ganal MW, Röder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389PubMedGoogle Scholar
  9. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800Google Scholar
  10. Ishimaru K (2003) Identification of a locus increasing rice yield and physiological analysis of its function. Plant Physiol 133:1083–1090PubMedCrossRefGoogle Scholar
  11. Juliano BO (1971) A simplified assay for milled-rice amylose. Cereal Sci Today 16:334–360Google Scholar
  12. Juliano BO, Villareal CP (1993) Grain quality evaluation of world rices. International Rice Research Institute, Manila, pp 205Google Scholar
  13. Korff MV, Wang H, Léon J, Pillen K (2004) Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. Spontaneum) as donor. Theor Appl Genet 109:1736–1745CrossRefGoogle Scholar
  14. Lee SJ, Oh CS, Suh JP, McCouch SR, Ahn SN (2005) Identification of QTLs for domestication-related and agronomic traits in an Oryza sativa × O. rufipogon BC1F7 population. Plant Breed 124:209–219CrossRefGoogle Scholar
  15. Li Z, Pinson SRM, Stansel JW, Paterson AH (1998) Genetic dissection of the source–sink relationship affecting fecundity and yield in (Oryza sativa L.). Mol Breed 4:419–426CrossRefGoogle Scholar
  16. Li C, Zhang Y, Ying K, Liang XL, Han B (2004a) Sequence variations of simple sequence repeats on chromosome-4 in two subspecies of Asian cultivated rice. Theor Appl Genet 108:392–400PubMedCrossRefGoogle Scholar
  17. Li JM, Thomson M, McCouch SR (2004b) Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics 168:2187–2195PubMedCrossRefGoogle Scholar
  18. Li CB, Zhou AL, Sang T (2006) Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara. New Phytol 170:185–194PubMedCrossRefGoogle Scholar
  19. Lin HX, Qian HR, Zhuang JY, Lu J, Min SK, Xiong ZM, Huang N, Zheng KL (1996) RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L.). Theor Appl Genet 92:920–927CrossRefGoogle Scholar
  20. Lu CF, Shen LH, Tan ZB, Xu YB, He P, Chen Y, Zhu LH (1997) Comparative mapping of QTLs for agronomic traits of rice across environments by using a doubled-haploid population. Theor Appl Genet 94:145–150CrossRefGoogle Scholar
  21. McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD (1988) Molecular mapping of rice chromosomes. Theor Appl Genet 76:815–829CrossRefGoogle Scholar
  22. McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207PubMedCrossRefGoogle Scholar
  23. Moncada P, Martinez CP, Borrero J, Chatel M, Gauch H, Guimaraes E, Tohme J, McCouch SR (2001) Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet 102:41–52CrossRefGoogle Scholar
  24. Nelson JC (1997) QGENE: software for marker-based genomic analysis and breeding. Mol Breed 3:239–245CrossRefGoogle Scholar
  25. Panaud O, Chen X, McCouch SR (1996) Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet 252:597–607PubMedGoogle Scholar
  26. Paterson AH, DeVerna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes in an interspecies cross of tomato. Genetics 124:735–742PubMedGoogle Scholar
  27. Pillen K, Zacharias A, Léon J (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet 107:340–352PubMedCrossRefGoogle Scholar
  28. Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR (2003) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1419–1432PubMedCrossRefGoogle Scholar
  29. Simmonds NW (1979) Principles of crop improvement. Longman Inc., New York, pp 16–19Google Scholar
  30. Sorrells ME, Rota ML, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Miftahudin, Mahmoud A, Ma X, Gustafson PJ, Qi LL, Echalier B, Gill BS, Matthews DE, Lazo GR, Chao S, Anderson OD, Edwards H, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Zhang D, Nguyen HT, Peng J, Lapitan NL, Gonzalez-Hernandez JL, Anderson JA, Hossain K, Kalavacharla V, Kianian SF, Choi DW, Close TJ, Dilbirligi M, Gill KS, Steber C, Walker-Simmons MK, McGuire PE, Qualset CO (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827PubMedGoogle Scholar
  31. Takeda K (1990) Heritability for grain size of rice estimated from parent–offspring correlation and selection response. Jpn J Breed 40:313–320Google Scholar
  32. Takeda K (1991) Inheritance of grain size and its implications for rice breeding. In: Rice genetics II. IRRI, Manila, pp. 181–189Google Scholar
  33. Takeda K, Saito K (1977) The inheritance and character expression of the minute gene derived from a rice genetic tester “Minute”. Bull Fac Agric Hirosaki Univ 271:1–29Google Scholar
  34. Takeda K, Saito K (1980) Major genes controlling grain size of rice. Jpn J Breed 30:280–282Google Scholar
  35. Takeda K, Saito K (1983) Heritability and genetic correlation of kernel weight and white belly frequency in rice. Jpn J Breed 33:468–480Google Scholar
  36. Temnykh S, Park W, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 100:697–712CrossRefGoogle Scholar
  37. Temnykh S, DeClerk G, Lukashova A, Lipovich L, Cartinhour S, McCouch SR (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length, transposon associations, and genetic marker potential. Genome Res 11:1441–1452PubMedCrossRefGoogle Scholar
  38. Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493PubMedCrossRefGoogle Scholar
  39. Webb BB (1991) Rice quality and grades. In: Luh BS (ed) Rice, vol 2, Utilization, 2nd edn. An AVI Book, New York, pp. 89–119Google Scholar
  40. Williams VR, Wu WT, Tsai HY, Bates HG (1958) Varietal differences in amylose content of rice starch. J Agric Food Chem 8:47–48CrossRefGoogle Scholar
  41. Wissuwa M, Wegner J, Ae N, Yano M (2002) Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theor Appl Genet 105:890–897PubMedCrossRefGoogle Scholar
  42. Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD, McCouch SR (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150:899–909PubMedGoogle Scholar
  43. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92PubMedCrossRefGoogle Scholar
  44. Zhuang JY, Lin HX, Lu J, Qian HR, Hittalmani S, Huang N, Zheng KL (1997) Analysis of QTL × environment interaction for yield components and plant height in rice. Theor Appl Genet 95:799–808CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Xiaobo Xie
    • 1
    • 4
  • Mi-Hee Song
    • 1
  • Fengxue Jin
    • 1
  • Sang-Nag Ahn
    • 1
  • Jung-Pil Suh
    • 2
  • Hung-Goo Hwang
    • 2
  • S. R. McCouch
    • 3
  1. 1.Department of Agronomy, College of Agriculture and Life SciencesChungnam National UniversityDaejeonKorea
  2. 2.National Institute of Crop Science, Rural Development AdministrationSuweonKorea
  3. 3.Department of Plant Breeding and GeneticsCornell UniversityIthacaUSA
  4. 4.Institute of HorticultureZhejiang Academy of Agricultural SciencesHangzhouChina

Personalised recommendations