Skip to main content
Log in

Genetic mapping reveals a single major QTL for bacterial wilt resistance in Italian ryegrass (Lolium multiflorum Lam.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Bacterial wilt caused by Xanthomonas translucens pv. graminis (Xtg) is a major disease of economically important forage crops such as ryegrasses and fescues. Targeted breeding based on seedling inoculation has resulted in cultivars with considerable levels of resistance. However, the mechanisms of inheritance of resistance are poorly understood and further breeding progress is difficult to obtain. This study aimed to assess the relevance of the seedling screening in the glasshouse for adult plant resistance in the field and to investigate genetic control of resistance to bacterial wilt in Italian ryegrass (Lolium multiflorum Lam.). A mapping population consisting of 306 F1 individuals was established and resistance to bacterial wilt was assessed in glasshouse and field experiments. Highly correlated data (r = 0.67–0.77, P < 0.01) between trial locations demonstrated the suitability of glasshouse screens for phenotypic selection. Analysis of quantitative trait loci (QTL) based on a high density genetic linkage map consisting of 368 amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers revealed a single major QTL on linkage group (LG) 4 explaining 67% of the total phenotypic variance (Vp). In addition, a minor QTL was observed on LG 5. Field experiments confirmed the major QTL on LG 4 to explain 43% (in 2004) to 84% (in 2005) of Vp and also revealed additional minor QTLs on LG 1, LG 4 and LG 6. The identified QTLs and the closely linked markers represent important targets for marker-assisted selection of Italian ryegrass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams E, Roldán-Ruiz I, Depicker A, van Bockstaele E, de Loose M (2000) A maternal factor conferring resistance to crown rust in Lolium multiflorum cv. “Axis”. Plant Breed 119:182–184

    Article  Google Scholar 

  • Aldaoud R, Anderson MW, Reed KFM, Smith KF (2004) Evidence of pathotypes among Australian isolates of crown rust infecting perennial ryegrass. Plant Breed 123:395–397

    Article  Google Scholar 

  • Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560

    Article  PubMed  CAS  Google Scholar 

  • Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP (1997) Signaling in plant-microbe interactions. Science 276:726–733

    Article  PubMed  CAS  Google Scholar 

  • Bert PF, Charmet G, Sourdille P, Hayward MD, Balfourier F (1999) A high-density molecular map for ryegrass (Lolium perenne) using AFLP markers. Theor Appl Genet 99:445–452

    Article  CAS  Google Scholar 

  • Boller B, Tanner P, Schubiger FX, Streckeisen P (2001) Selecting meadow fescue ecotypes for reduced susceptibility to bacterial wilt. In: Monjardino P, da Câmara Machado A, Carnide V (eds) Breeding for stress tolerance in fodder crops and amenity grasses. Department of Agricultural Sciences, University of Azores, Terceira, pp 103–107

    Google Scholar 

  • Brinkerhoff LA (1970) Variation in Xanthomonas malvacearum and its relation to control. Annu Rev Phytopathol 8:85–110

    Article  Google Scholar 

  • Brummer EC (1999) Capturing heterosis in forage crop cultivar development. Crop Sci 39:943–954

    Article  Google Scholar 

  • Castiglioni P, Ajmone-Marsan P, van Wijk R, Motto M (1999) AFLP markers in a molecular linkage map of maize: codominant scoring and linkage group distribution. Theor Appl Genet 99:425–431

    Article  CAS  Google Scholar 

  • Channon AG, Hissett R (1984) The incidence of bacterial wilt caused by Xanthomonas campestris pv. graminis in pasture grasses in the West of Scotland. Plant Pathol 33:113–121

    Article  Google Scholar 

  • Delannoy E, Lyon BR, Marmey P, Jalloul A, Daniel JF, Montillet JL, Essenberg M, Nicole M (2005) Resistance of cotton towards Xanthomonas campestris pv. malvacearum. Annu Rev Phytopathol 43:63–82

    Article  PubMed  CAS  Google Scholar 

  • Devos KM (2005) Updating the ‘crop circle’. Curr Opin Plant Biol 8:155–162

    Article  PubMed  CAS  Google Scholar 

  • Dumsday JL, Smith KF, Forster JW, Jones ES (2003) SSR-based genetic linkage analysis of resistance to crown rust (Puccinia coronata f. sp. lolii) in perennial ryegrass (Lolium perenne). Plant Pathol 52:628–637

    Article  Google Scholar 

  • Egli T, Goto M, Schmidt D (1975) Bacterial wilt, a new forage grass disease. J Phytopathol 82:111–121

    Article  Google Scholar 

  • Erickson D (2005) Mapping the future of QTL’s. Heredity 95:417–418

    Article  PubMed  CAS  Google Scholar 

  • Essenberg M, Bayles MB, Samad RA, Hall JA, Brinkerhoff LA, Verhalen LM (2002) Four near-isogenic lines of cotton with different genes for bacterial blight resistance. Phytopathology 92:1323–1328

    Article  CAS  PubMed  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman group Ltd, Essex

    Google Scholar 

  • Faville MJ, Vecchies AC, Schreiber M, Drayton MC, Hughes LJ, Jones ES, Guthridge KM, Smith KF, Sawbridge T, Spangenberg GC, Bryan GT, Forster JW (2004) Functionally associated molecular genetic marker map construction in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 110:12–32

    Article  PubMed  CAS  Google Scholar 

  • Fujimori M, Hayashi K, Hirata M, Ikeda S, Takahashi W, Mano Y, Sato H, Takamizo T, Mizuno K, Fujiwara T, Sugita S (2004) Molecular breeding and functional genomics for tolerance to biotic stress. In: Hopkins A, Wang ZY, Mian R, Sledge M, Barker RE (eds) Molecular breeding of forage and turf. Kluwer, Dordrecht, pp 21–35

    Chapter  Google Scholar 

  • Gnanamanickam SS, Priyadarisini VB, Narayanan NN, Vasudevan P, Kavitha S (1999) An overview of bacterial blight disease of rice and strategies for its management. Curr Sci 77:1435–1444

    Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    PubMed  CAS  Google Scholar 

  • Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C, Yang F, Chu Z, Wang G-L, White FF, Yin Z (2005) R gene expression induced by a type-III effector triggers disease resistance in rice. Nature 435:1122–1125

    Article  PubMed  CAS  Google Scholar 

  • Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush GS, Sasaki T (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148:479–494

    PubMed  CAS  Google Scholar 

  • Hayward MD, Forster JW, Jones JG, Dolstra O, Evans C, McAdam NJ, Hossain KG, Stammers M, Will J, Humphreys MO, Evans GM (1998) Genetic analysis of Lolium. I. Identification of linkage groups and the establishment of a genetic map. Plant Breed 117:451–455

    Article  Google Scholar 

  • Ikeda S (2005) Isolation of disease resistance gene analogs from Italian ryegrass (Lolium multiflorum Lam.). Grassl Sci 51:63–70

    Article  CAS  Google Scholar 

  • Imaizumi S, Honda M, Fujimori T (1999) Effect of temperature on the control of annual bluegrass (Poa annua L.) with Xanthomonas campestris pv. poae (JT-P482). Biol Control 16:13–17

    Article  Google Scholar 

  • Inoue M, Gao Z, Hirata M, Fujimori M, Cai H (2004) Construction of a high-density linkage map of Italian ryegrass (Lolium multiflorum Lam.) using restriction fragment length polymorphism, amplified fragment length polymorphism, and telomeric repeat associated sequence markers. Genome 47:57–65

    Article  PubMed  CAS  Google Scholar 

  • Jones ES, Dupal MP, Dumsday JL, Hughes LJ, Forster JW (2002a) An SSR-based genetic linkage map for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 105:577–584

    Article  CAS  Google Scholar 

  • Jones ES, Mahoney NL, Hayward MD, Armstead IP, Jones JG, Humphreys MO, King IP, Kishida T, Yamada T, Balfourier F, Charmet G, Forster JW (2002b) An enhanced molecular marker based genetic map of perennial ryegrass (Lolium perenne) reveals comparative relationships with other Poaceae genomes. Genome 45:282–295

    Article  CAS  Google Scholar 

  • Kauffman HE, Reddy APK, Hsieh SPY, Merca SD (1973) An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis Rep 57:537–541

    Google Scholar 

  • Kölliker R, Herrmann D, Boller B, Widmer F (2003) Swiss Mattenklee landraces, a distinct and diverse genetic resource of red clover (Trifolium pratense L.). Theor Appl Genet 107:306–315

    Article  PubMed  CAS  Google Scholar 

  • Kölliker R, Kraehenbuehl R, Boller B, Widmer F (2006) Genetic diversity and pathogenicity of the grass pathogen Xanthomonas translucens pv. graminis. Syst Appl Microbiol 29:109–119

    Article  PubMed  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kpémoua K, Boher B, Nicole M, Calatayud P, Geiger JP (1996) Cytochemistry of defense responses in cassava infected by Xanthomonas campestris pv. manihotis. Can J Microbiol 42:1131–1143

    Article  Google Scholar 

  • Kubik C, Sawkins M, Meyer WA, Gaut BS (2001) Genetic diversity in seven perennial ryegrass (Lolium perenne L.) cultivars based on SSR markers. Crop Sci 41:1565–1572

    Article  CAS  Google Scholar 

  • Lauvergeat V, Barre P, Bonnet M, Ghesquière M (2005) Sixty simple sequence repeat markers for use in the FestucaLolium complex of grasses. Mol Ecol Notes 5:401–405

    Article  CAS  Google Scholar 

  • Lehmann J, Briner H-U, Schubiger FX, Mosimann E (2000) Italian and hybrid ryegrass: cultivar trials 97 to 99. Agrarforschung 7:124–129

    Google Scholar 

  • Leyns F (1993) Xanthomonas campestris pv. graminis: cause of bacterial wilt of forage grasses. In: Swings JG, Civerolo EL (eds) Xanthomonas. Chapman & Hall, London, pp 55–57

    Google Scholar 

  • Lopez C, Soto M, Restrepo S, Piégu B, Cooke R, Delseny M, Tohme J, Verdier V (2005) Gene expression profile in response to Xanthomonas axonopodis pv. manihotis infection in cassava using a cDNA microarray. Plant Mol Biol 57:393–410

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–332

    Article  PubMed  CAS  Google Scholar 

  • Michel VV (2001) Interactions between Xanthomonas campestris pv. graminis strains and meadow fescue and Italian ryegrass cultivars. Plant Dis 85:538–542

    Article  Google Scholar 

  • Mutlu N, Miklas P, Reiser J, Coyne D (2005) Backcross breeding for improved resistance to common bacterial blight in pinto bean (Phaseolus vulgaris L.). Plant Breed 124:282–287

    Article  Google Scholar 

  • Muylle H, Baert J, Van Bockstaele E, Moerkerke B, Goetghebeur E, Roldán-Ruiz I (2005a) Identification of molecular markers linked with crown rust (Puccinia coronata f. sp. lolii) resistance in perennial ryegrass (Lolium perenne) using AFLP markers and a bulked segregant approach. Euphytica 143:135–144

    Article  CAS  Google Scholar 

  • Muylle H, Baert J, Van Bockstaele E, Pertijs J, Roldán-Ruiz I (2005b) Four QTLs determine crown rust (Puccinia coronata f. sp. lolii) resistance in a perennial ryegrass (Lolium perenne) population. Heredity 95:348–357

    Article  CAS  Google Scholar 

  • Newbury HJ (2003) Plant molecular breeding. Blackwell, Oxford

    Google Scholar 

  • O’Hanlon PC, Peakall R (2000) A simple method for the detection of size homoplasy among amplified fragment length polymorphism fragments. Mol Ecol 9:815–816

    Article  PubMed  CAS  Google Scholar 

  • Paul VH, Smith IM (1989) Bacterial pathogens of Gramineae: systematic review and assessment of quarantine status for the EPPO region. EPPO Bull 19:33–42

    Article  Google Scholar 

  • Rao KK, Lakshminarasu M, Jena KK (2002) DNA markers and marker-assisted breeding for durable resistance to bacterial blight disease in rice. Biotechnol Adv 20:33–47

    Article  PubMed  CAS  Google Scholar 

  • Rechsteiner MP, Widmer F, Kölliker R (2006) Expression profiling of Italian ryegrass (Lolium multiflorum Lam.) during infection with the bacterial wilt inducing pathogen Xanthomonas translucens pv. graminis. Plant Breed 125:43–51

    Article  CAS  Google Scholar 

  • Saha MC, Mian MAR, Eujayl I, Zwonitzer JC, Wang L, May GD (2004) Tall fescue EST–SSR markers with transferability across several grass species. Theor Appl Genet 109:783–791

    Article  PubMed  Google Scholar 

  • Schmidt D (1988a) Bacterial wilt of forage grasses: strategies to limit disease dispersal through mowing. Revue Suisse d’agriculture 20:351–357

    Google Scholar 

  • Schmidt D (1988b) Prevention of bacterial wilt of grasses by phylloplane bacteria. J Phytopathol 122:253–260

    Article  Google Scholar 

  • Schmidt D, Nüesch B (1980) Resistance to bacterial wilt (Xanthomonas graminis) increases yield and persistency of Lolium multiflorum. EPPO Bull 10:335–339

    Article  Google Scholar 

  • Schön CC, Utz HF, Groh S, Truberg B, Openshaw S, Melchinger AE (2004) Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits. Genetics 167:485–498

    Article  PubMed  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Thorogood D, Paget MF, Humphreys MO, Turner LB, Armstead IP, Roderick HW (2001) QTL analysis of crown rust resistance in perennial ryegrass—implications for breeding. Int Turfgrass Soc Res J 9:218–223

    Google Scholar 

  • Thorogood D, Kaiser WJ, Jones JG, Armstead I (2002) Self-incompatibility in ryegrass 12. Genotyping and mapping the S and Z loci of Lolium perenne L. Heredity 88:385–390

    Article  PubMed  CAS  Google Scholar 

  • Thorogood D, Armstead IP, Turner LB, Humphreys MO, Hayward MD (2005) Identification and mode of action of self-compatibility loci in Lolium perenne L. Heredity 94:356–363

    Article  PubMed  CAS  Google Scholar 

  • Utz HF (2000) PLABSTAT: a computer program for statistical analysis of plant breeding experiments. Institute of Plant Breeding, Seed Science and Population Genetics. University of Hohenheim, Stuttgart

    Google Scholar 

  • Utz HF, Melchinger AE (1996) PLABQTL: a program for composite interval mapping of QTL. J Quant Trait Loci 2(1). http://www.uni-hohenheim.de/∼ipspwww/soft.html

  • Van Ooijen JW (2004) MapQTL® 5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma B. V., Wageningen

    Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap® 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Vekemans X, Beauwens T, Lemaire M, Roldán-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151

    Article  PubMed  CAS  Google Scholar 

  • Verdier V, Restrepo S, Mosquera G, Jorge V, Lopez C (2004) Recent progress in the characterization of molecular determinants in the Xanthomonas axonopodis pv. manihotis-cassava interaction. Plant Mol Biol 56:573–584

    Article  PubMed  CAS  Google Scholar 

  • Visscher PM, Goddard ME (2004) Prediction of the confidence interval of quantitative trait loci location. Behav Genet 34:477–482

    Article  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Forster JW, Humphreys MW, Takamizo T (2005) Genetics and molecular breeding in Lolium/Festuca grass species complex. Grassl Sci 51:89–106

    CAS  Google Scholar 

  • Yang WC, Francis DM (2005) Marker-assisted selection for combining resistance to bacterial spot and bacterial speck in tomato. J Am Soc Hortic Sci 130:716–721

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge CRCMPB, Australia and NILGS, Japan for granting research licences for the use of SSR markers, Dr. F.X. Schubiger for providing the Xtg 29 isolate and P. Streckeisen and Y. Häfele for excellent technical support. We further thank Prof. Dr. agr. H.F. Utz and Dr. C.-C. Schön, University of Hohenheim for support regarding field trial design, QTL and statistical analyses. The present study was funded by the Swiss National Science Foundation (grant 3100-065417) and kindly supported by grants from the “Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft” (BMVEL) and “Gemeinschaft zur Förderung der privaten deutschen Pflanzenzüchtung e.V.” (GFP, grant 01 HS 006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Kölliker.

Additional information

Communicated by T. Lübberstedt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Studer, B., Boller, B., Herrmann, D. et al. Genetic mapping reveals a single major QTL for bacterial wilt resistance in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet 113, 661–671 (2006). https://doi.org/10.1007/s00122-006-0330-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0330-2

Keywords

Navigation