Development of simple sequence repeat (SSR) markers and construction of an SSR-based linkage map in Italian ryegrass (Lolium multiflorum Lam.)

  • Mariko Hirata
  • Hongwei Cai
  • Maiko Inoue
  • Nana Yuyama
  • Yuichi Miura
  • Toshinori Komatsu
  • Tadashi Takamizo
  • Masahiro Fujimori
Original Paper

Abstract

In order to develop simple sequence repeat (SSR) markers in Italian ryegrass, we constructed a genomic library enriched for (CA)n-containing SSR repeats. A total of 1,544 clones were sequenced, of which 1,044 (67.6%) contained SSR motifs, and 395 unique clones were chosen for primer design. Three hundred and fifty-seven of these clones amplified products of the expected size in both parents of a two-way pseudo-testcross F1 mapping population, and 260 primer pairs detected genetic polymorphism in the F1 population. Genetic loci detected by a total of 218 primer pairs were assigned to locations on seven linkage groups, representing the seven chromosomes of the haploid Italian ryegrass karyotype. The SSR markers covered 887.8 cM of the female map and 795.8 cM of the male map. The average distance between two flanking SSR markers was 3.2 cM. The SSR markers developed in this study will be useful in cultivar discrimination, linkage analysis, and marker-assisted selection of Italian ryegrass and closely related species.

Supplementary material

122_2006_292_MOESM1_ESM.xls (74 kb)
Supplementary material

References

  1. Bert PF, Charmet G, Sourdille P, Hayward MD, Balfourier F (1999) A high-density molecular map for ryegrass (Lolium perenne) using AFLP markers. Theor Appl Genet 99:445–452CrossRefGoogle Scholar
  2. Buchanan FC, Adams LJ, Littlejohn RP, Maddox JF, Crawford AM (1994) Determination of evolutionary relationships among sheep breeds using microsatellites. Genomics 22:397–403PubMedCrossRefGoogle Scholar
  3. Cai HW, Yuyama N, Tamaki H, Yosizawa A (2003) Development and characterization of simple sequence repeat (SSR) markers in hexaploid forage grass timothy (Phleum pratense L.). Theor Appl Genet 107:1337–1349PubMedCrossRefGoogle Scholar
  4. Cardle L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R (2000) Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156:847–854PubMedGoogle Scholar
  5. Chen X, Cho YG, McCouch SR (2002) Microsatellites in Oryza and other plant species. Mol Gen Genomics 268:331–343CrossRefGoogle Scholar
  6. Davis GL, McMullen MD, Baysdorfer C, Musket T, Grant D, Staebell M et al (1999) A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map. Genetics 152:1137–1172PubMedGoogle Scholar
  7. Devey ME, Sewell MM, Uren TL, Neale DB (1999) Comparative genetic mapping in the loblolly and radiata pine using RFLP and microsatellite markers. Theor Appl Genet 99:656–662CrossRefGoogle Scholar
  8. Echt CS, Vendranin GG, Nelson CD, Marquardt P (1999) Microsatellite DNA as shared markers among conifer species. Can J For Res 29:365–371CrossRefGoogle Scholar
  9. Elsik CG, Williams CG (2001) Families of clustered microsatellites in a conifer genome. Mol Genet Genomics 265:535–542PubMedCrossRefGoogle Scholar
  10. Erpelding JE, Blake NK, Blake TK, Talbert LE (1996) Transfer of sequence tagged site PCR markers between wheat and barley. Genome 39:802–810PubMedCrossRefGoogle Scholar
  11. Fahima T, Röder MS, Grama A, Nevo E (1998) Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resistant to yellow rust. Theor Appl Genet 96:187–195CrossRefGoogle Scholar
  12. Fujimori M, Hirata M, Sugita S, Inoue M, Cai H, Akiyama F, Mano Y, Komatsu T (2000) Development of a high density map in Italian ryegrass (Lolium multiflorum Lam.) using amplified fragment length polymorphism. In: 2nd international symposium on molecular breeding of forage crops, 19–24 November 2000, Lorne and Hamilton, Victoria, AustraliaGoogle Scholar
  13. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137PubMedGoogle Scholar
  14. Hamada H, Kakunaga T (1982) Potential Z-DNA forming sequences are highly dispersed in the human genome. Nature 298:396–398PubMedCrossRefGoogle Scholar
  15. Hayward MD, Mcadam NJ, Jones JG, Evans C, Evans GM, Forster JW, Ustin A, Hossain KG, Quader B, Stammers M, Will JK (1994) Genetic markers and the selection of quantitative traits in forage grasses. Euphytica 77:269–275CrossRefGoogle Scholar
  16. Hayward MD, Forster JW, Jones JG, Dolstra O, Evans C, Mcadam NJ, Hossain KG, Stammers M, Will J, Humphreys MO, Evans GM (1998) Genetic analysis of Lolium. I. Identification of linkage groups and the establishment of a genetic map. Plant Breed 117:451–455CrossRefGoogle Scholar
  17. Inoue M, Cai HW (2004) Sequence analysis and conversion of genomic RFLP markers to STS and SSR markers in Italian ryegrass (Lolium multiflorum Lam.). Breed Sci 54:245–251CrossRefGoogle Scholar
  18. Inoue M, Gao ZS, Hirata M, Fujimori M, Cai HW (2004) Construction of a high-density linkage map of Italian ryegrass (Lolium multiflorum Lam.) using restriction fragment length polymorphism, amplified fragment length polymorphism, and telomeric repeat associated sequence markers. Genome 47:57–65PubMedCrossRefGoogle Scholar
  19. Jones ES, Dupal MP, Kolliker R, Drayton MC, Forster JW (2001) Development and characterization of simple sequence repeat (SSR) markers for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 102:405–415CrossRefGoogle Scholar
  20. Jones ES, Dupal MP, Dumsday JL, Hughes LJ, Forster JW (2002a) An SSR-based genetic linkage map for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 105:577–584CrossRefGoogle Scholar
  21. Jones ES, Mahoney NL, Hayward MD, Armstead IP, Jones JG, Humphreys MO, Kishida T, Yamada T, Balfourier F, Charmet G, Forster JW (2002b) An enhanced molecular marker-based genetic map of perennial ryegrass (Lolium perenne L.) reveals comparative relationships with other Poaceae genomes. Genome 45:282–295CrossRefGoogle Scholar
  22. Kolliker R, Jones ES, Drayton MC, Dupal MP, Forster JW (2001) Development and characterization of simple sequence repeat (SSR) markers for white clover (Trifolium repens L.). Theor Appl Genet 102:416–424CrossRefGoogle Scholar
  23. Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175Google Scholar
  24. Lagercrantz U, Ellergren H, Andersson L (1993) The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Res 21:1111–1115PubMedCrossRefGoogle Scholar
  25. Lem P, Lallemand J (2003) Grass consensus STS markers: an efficient approach for detecting polymorphism in Lolium. Theor Appl Genet 107:1113–1122PubMedCrossRefGoogle Scholar
  26. Liu XM, Smith CM, Gill BS (2002) Identification of microsatellite markers linked to Russian wheat aphid resistance genes Dn4 and Dn6. Theor Appl Genet 104:1042–1048PubMedCrossRefGoogle Scholar
  27. Mano Y, Sayed-Tabatabaei BE, Graner A, Blake T, Takaiwa F, Oka S, Komatsuda T (1999) Map construction of sequence-tagged sites (STS) in barley (Hordeum vulgare L). Theor Appl Genet 98:937–946CrossRefGoogle Scholar
  28. Murray MG, Thompson WF (1980) The isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325PubMedCrossRefGoogle Scholar
  29. Panaud O, Chen X, McCouch SR (1995) Frequency of microsatelite sequences in rice (Oryza sativa L.). Genome 38:1170–1176PubMedGoogle Scholar
  30. Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A (1998) Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol Biol Evol 15:1275–1287PubMedGoogle Scholar
  31. Peng Y, Schertz KF, Cartinhour S, Hart GE (1999) Comparative genome mapping of Sorghum bicolor (L.) Moench using a RFLP map constructed in a population of recombinant inbred lines. Plant Breed 118:225–235CrossRefGoogle Scholar
  32. Ramsay L, Macaulay M, Cardle L, Ivanissevich SD, Maestri E, Powell W, Waugh R (1999) Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant J 17:415–425PubMedCrossRefGoogle Scholar
  33. Ramsay L, Macaulay M, Ivanissevich SD, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A et al (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005PubMedGoogle Scholar
  34. Röder MS, Plaschke J, Konig SU, Börner A, Sorrells ME, Tanksley SD, Ganal MW (1995) Abundance, variability and chromosomal location of microsatellites in wheat. Mol Gen Genet 246:327–333PubMedCrossRefGoogle Scholar
  35. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedGoogle Scholar
  36. Saha MC, Rouf Mian MA, Eujayl I, Zwonitzer JC, Wang L, May GD (2004) Tall fescue EST-SSR markers with transferability across several grass species. Theor Appl Genet 109:783–791PubMedCrossRefGoogle Scholar
  37. Saha MC, Mian R, Zwonitzer JC, Chekhovskiy K, Hopkins AA (2005) An SSR- and AFLP-based genetic linkage map of tall fescue (Festuca arundinacea Schreb.). Theor Appl Genet 110:323–336PubMedCrossRefGoogle Scholar
  38. Schmidt T, Heslop-Harrison JS (1996) The physical and genomic organization of microsatellites in sugar beet. Proc Natl Acad Sci USA 93:8761–8765PubMedCrossRefGoogle Scholar
  39. Sharopova N, McMullen MD, Schultz L, Schroeder S, Sanchez-Villeda H, Gardiner J Bergstrom D, Houchins K, Melia-Hancock S, Musket T, Duru N, Polacco M, Edwards K, Ruff T, Regster JC, Brouwer C, Thompson R, Velasco R, Chin E, Lee M, Woodman-Clikeman W, Long MJ, Liscum E, Cone K, Davis G, Coe EH Jr (2002) Development and mapping of SSR markers for maize. Plant Mol Biol 48:463–481PubMedCrossRefGoogle Scholar
  40. Stallings RL, Ford AF, Nelson D, Torney DC, Hildebrand CE, Moyzis RK (1991) Evolution and distribution of (GT)n repetitive sequences in mammalian genomes. Genomics 10:807–815PubMedCrossRefGoogle Scholar
  41. Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package, JoinMap. Plant J 3:739–744CrossRefGoogle Scholar
  42. Talbert LE, Blake NK, Chee PW, Blake TK, Magyer GM (1994) Evaluation of “sequence-tagged-site” PCR products as molecular markers in wheat. Theor Appl Genet 87:789–794CrossRefGoogle Scholar
  43. Talbert LE, Bruckner PL, Smith LY, Sears R, Martin TJ (1996) Development of PCR markers linked to resistance to wheat streak mosaic virus in wheat. Theor Appl Genet 93:463–467CrossRefGoogle Scholar
  44. Tang S, Yu JK, Slabaugh MB, Shintani DK, Knapp SJ (2002) Simple sequence repeat map of the sunflower genome. Theor Appl Genet 105:1124–1136PubMedCrossRefGoogle Scholar
  45. Taramino G, Tingey S (1996) Simple sequence repeats for germplasm analysis and mapping in maize. Genome 39:277–287PubMedCrossRefGoogle Scholar
  46. Temnykh S, Park WD, Ayers N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 100:697–712CrossRefGoogle Scholar
  47. Van Deynze AE, Sorrells ME, Pzrk WD, Ayres NM, Fu H, Cartinhour SW, Paul E, McCouch SR (1998) Anchor probes for comparative mapping of grass genera. Theor Appl Genet 97:356–369CrossRefGoogle Scholar
  48. Voorrips RE (2002) MapChart, Software for the graphical presentation of linkage maps and QTLs. J Heredity 93:77–78CrossRefGoogle Scholar
  49. Wang Z, Weber JL, Zhong G, Tanksley SD (1994) Survey of plant short tandem repeats. Theor Appl Genet 88:1–6Google Scholar
  50. White G, Powell W (1997) Cross-species amplification of SSR loci in the Meliaceae family. Mol Ecol 6:1195–1197CrossRefGoogle Scholar
  51. Whitton J, Rieseberg LH, Ungerer MC (1997) Microsatellite loci are not conserved across the Asteraceae. Mol Biol Evol 14:204–209PubMedGoogle Scholar
  52. Wu KS, Tanksley SD (1993) Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet 241:225–235PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Mariko Hirata
    • 1
  • Hongwei Cai
    • 1
  • Maiko Inoue
    • 1
  • Nana Yuyama
    • 1
  • Yuichi Miura
    • 1
  • Toshinori Komatsu
    • 2
  • Tadashi Takamizo
    • 2
  • Masahiro Fujimori
    • 2
    • 3
  1. 1.Forage Crop Research InstituteJapan Grassland Agriculture and Forage Seed AssociationTochigiJapan
  2. 2.National Institute of Livestock and Grassland ScienceTochigiJapan
  3. 3.Yamanashi Prefectural Dairy Experiment StationYamanashiJapan

Personalised recommendations