Theoretical and Applied Genetics

, Volume 112, Issue 8, pp 1593–1600 | Cite as

Construction of a quinoa (Chenopodium quinoa Willd.) BAC library and its use in identifying genes encoding seed storage proteins

  • M. R. Stevens
  • C. E. Coleman
  • S. E. Parkinson
  • P. J. Maughan
  • H.-B. Zhang
  • M. R. Balzotti
  • D. L. Kooyman
  • K. Arumuganathan
  • A. Bonifacio
  • D. J. Fairbanks
  • E. N. Jellen
  • J. J. Stevens
Original Paper

Abstract

Quinoa (Chenopodium quinoa Willd.) is adapted to the harsh environments of the Andean Altiplano region. Its seeds have a well-balanced amino acid composition and exceptionally high protein content with respect to human nutrition. Quinoa grain is a staple in the diet of some of the most impoverished people in the world. The plant is an allotetraploid displaying disomic inheritance (2n=4x=36) with a di-haploid genome of 967 Mbp (megabase pair), or 2C=2.01 pg. We constructed two quinoa BAC libraries using BamHI (26,880 clones) and EcoRI (48,000 clones) restriction endonucleases. Cloned inserts in the BamHI library average 113 kb (kilobase) with approximately 2% of the clones lacking inserts, whereas cloned inserts in the EcoRI library average 130 kb and approximately 1% lack inserts. Three plastid genes used as probes of high-density arrayed blots of 73,728 BACs identified approximately 2.8% of the clones as containing plastid DNA inserts. We estimate that the combined quinoa libraries represent at least 9.0 di-haploid nuclear genome equivalents. An average of 12.2 positive clones per probe were identified with 13 quinoa single-copy ESTs as probes of the high-density arrayed blots, suggesting that the estimate of 9.0× coverage of the genome is conservative. Utility of the BAC libraries for gene identification was demonstrated by probing the library with a partial sequence of the 11S globulin seed storage protein gene and identifying multiple positive clones. The presence of the 11S globulin gene in four of the clones was verified by direct comparison with quinoa genomic DNA on a Southern blot. Besides serving as a useful tool for gene identification, the quinoa BAC libraries will be an important resource for physical mapping of the quinoa genome.

References

  1. Arumuganathan K, Earle ED (1991) Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol Biol Rep 9:229–241CrossRefGoogle Scholar
  2. Cenci A, Chantret N, Kong X, Gu Y, Anderson OD, Fahima T, Distelfeld A, Dubcovsky J (2003) Construction and characterization of a half million clone BAC library of durum wheat (Triticum turgidum ssp. durum). Theor Appl Genet 107:931–939PubMedCrossRefGoogle Scholar
  3. Chauhan GS, Eskin NAM, Mills PA (1999) Effect of saponin extraction on the nutritional quality of quinoa (Chenopodium quinoa Willd.) proteins. J Food Sci Technol 36:123–126Google Scholar
  4. Chen Q, Sun S, Ye Q, McCuine S, Huff E, Zhang H-B (2004) Construction of two BAC libraries from the wild Mexican diploid potato, Solanum pinnatisectum, and the identification of clones near the late blight and Colorado potato beetle resistance loci. Theor Appl Genet 108:1002–1009PubMedCrossRefGoogle Scholar
  5. Choi S, Creelman RA, Mullet JE, Wing RA (1995) Construction and characterization of a bacterial artificial chromosome library of Arabidopsis thaliana. Plant Mol Biol Rep 13:124–128CrossRefGoogle Scholar
  6. Coles ND, Coleman CE, Christensen SA, Jellen EN, Stevens MR, Bonifacio A, Rojas-Beltran JA, Fairbanks DJ, Maughan PJ (2005) Development and use of an expressed sequenced tag library in quinoa (Chenopodium quinoa Willd.) for the discovery of single nucleotide polymorphisms. Plant Sci 168:439–447CrossRefGoogle Scholar
  7. Coulter L, Lorenz K (1990) Quinoacomposition, nutritional value, food applications. Food Sci Technol 23:203–207Google Scholar
  8. Danesh D, Peñuela S, Mudge J, Denny RL, Nordstrom H, Martinez JP, Young ND, (1998) A bacterial artificial chromosome library for soybean and identification of clones near a major cyst resistance gene. Theor Appl Genet 96:196–202CrossRefGoogle Scholar
  9. Deng Z, Tao Q, Chang Y-L, Huang S, Ling P, Yu C, Chen C, Gmitter Jr FG, Zhang H-B (2001) Construction of a bacterial artificial chromosome (BAC) library for citrus and identification of BAC contigs containing resistance gene candidates. Theor Appl Genet 102:1177–1184CrossRefGoogle Scholar
  10. Domoney C, Casey R (1985) Measurement of gene number for seed storage proteins in Pisum. Nucl Acids Res 13:687–699PubMedCrossRefGoogle Scholar
  11. Domoney C, Ellis THN, Davies DR (1986) Organization and mapping of legumin genes in Pisum. Mol Gen Genet 202:280–285CrossRefGoogle Scholar
  12. Frijters ACJ, Zhang Z, van-Damme M, Wang G-L, Ronald PC, Michelmore RW (1997) Construction of a bacterial artificial chromosome library containing large EcoRI and HindIII genomic fragments of lettuce. Theor Appl Genet 94:390–399CrossRefGoogle Scholar
  13. Giusti L (1970) El género Chenopodium en Argentina: I. Números de cromosomas. Darwiniana 16:98–105Google Scholar
  14. Heim U, Schubert R, Bäumlein H, Wobus U (1989) The legumin gene family: structure and evolutionary implications of Vicia faba B-type genes and pseudogenes. Plant Mol Biol 13:653–663PubMedCrossRefGoogle Scholar
  15. Hong CP, Lee SJ, Park JY, Plaha P, Park YS, Lee YK, Choi JE, Kim KY, Lee JH, Lee J, Jin H, Choi SR, Lim YP (2004) Construction of a BAC library of Korean ginseng and initial analysis of BAC-end sequences. Mol Genet Genomics 271:709–716PubMedCrossRefGoogle Scholar
  16. Kawabe A, Miyashita NT (2003) Patterns of codon usage bias in three dicot and four monocot plant species. Genes Genet Syst 78:343–352PubMedCrossRefGoogle Scholar
  17. Kolano B, Pando LG, Maluszynska J (2001) Molecular cytogenetic studies in Chenopodium quinoa and Amaranthus caudatus. Acta Soc Bot Pol 70:85–90Google Scholar
  18. Luo M, Wang Y-H, Frisch D, Joobeur T, Wing RA, Dean RA (2001) Melon bacterial artificial chromosome (BAC) library construction using improved methods and identification of clones linked to the locus conferring resistance to melon Fusarium wilt (Fom-2). Genome 44:154–162PubMedCrossRefGoogle Scholar
  19. Mason SL, Stevens MR, Jellen EN, Bonifacio A, Fairbanks DJ, Coleman CE, McCarty RR, Rasmussen AG, Maughan PJ (2005) Development and use of microsatellite markers for germplasm characterization in quinoa (Chenopodium quinoa Willd.). Crop Sci 45:1618–1630CrossRefGoogle Scholar
  20. Maughan PJ, Bonifacio A, Jellen EN, Stevens MR, Coleman CE, Ricks M, Mason SL, Jarvis DE, Gardunia BW, Fairbanks DJ (2004) A genetic linkage map of quinoa (Chenopodium quinoa) based on AFLP, RAPD, and SSR markers. Theor Appl Genet 109:1188–1195PubMedCrossRefGoogle Scholar
  21. Monaco AP, Larin Z (1994) YACs, BACs, PACs and MACs: artificial chromosomes as research tools. Trends Biotechnol 12:280–286PubMedCrossRefGoogle Scholar
  22. Moullet O, Zhang H-B, Lagudah ES (1999) Construction and characterization of a large DNA insert library from the D genome of wheat. Theor Appl Genet 99:305–313CrossRefGoogle Scholar
  23. Nam Y-W, Penmetsa RV, Endre G, Uribe P, Kim D, Cook DR (1999) Construction of a bacterial artificial chromosome library of Medicago truncatula and identification of clones containing ethylene-response genes. Theor Appl Genet 98:638–646CrossRefGoogle Scholar
  24. Nam Y-W, Lee J-R, Song K-H, Lee M-K, Robbins MD, Chung S-M, Staub JE, Zhang H-B (2005) Construction of two BAC libraries from cucumber (Cucumis sativus L.) and identification of clones linked to yield component quantitative trait loci. Theor Appl Genet 111:150–161PubMedCrossRefGoogle Scholar
  25. Nilmalgoda SD, Cloutier S, Walichnowski AZ (2003) Construction and characterization of a bacterial artificial chromosome (BAC) library of hexaploid wheat (Triticum aestivum L.) and validation of genome coverage using locus-specific primers. Genome 46:870–878PubMedCrossRefGoogle Scholar
  26. Noir S, Patheyron S, Combes M-C, Lashermes P, Chalhoub B (2004) Construction and characterisation of a BAC library for genome analysis of the allotetraploid coffee species (Coffea arabica L.). Theor Appl Genet 109:225–230PubMedCrossRefGoogle Scholar
  27. Parkinson SE (2001) Cytogenetic studies and construction of a bacterial artificial chromosome library from Chenopodium quinoa (Willd.). MS thesis. Agronomy and Horticulture, Provo, UTGoogle Scholar
  28. Partap T, Joshi BD, Galwey NW (1998) Chenopods. Chenopodium spp. Promoting the conservation and use of underutilized and neglected crops. 22. Institute of Plant Genetics and Crop Plant Research/International Plant Genetic Resources Institute, Gatersleben, Germany/Rome, ItalyGoogle Scholar
  29. Prado FE, Boero C, Gallardo M, González JA (2000) Effect of NaCl on germination, growth, and soluble sugar content in Chenopodium quinoa Willd. seeds Bot Bull Acad Sin 41:27–34Google Scholar
  30. Risi JC, Galwey NW (1984) The Chenopodium grains of the Andes: Inca crops for modern agriculture. Adv Appl Biol 10:145–216Google Scholar
  31. Ruas PM, Bonifacio A, Ruas CF, Fairbanks DJ, Andersen WR (1999) Genetic relationship among 19 accessions of six species of Chenopodium L., by random amplified polymorphic DNA fragments (RAPD). Euphytica 105:25–32CrossRefGoogle Scholar
  32. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018PubMedCrossRefGoogle Scholar
  33. Salinas J, Matassi G, Montero LM, Bernardi G (1988) Compositional compartmentalization and compositional patterns in the nuclear genomes of plants. Nucl Acids Res 16:4269–4285PubMedCrossRefGoogle Scholar
  34. Simmonds NW (1971) The breeding system of Chenopodium quinoa. I. Male sterillity. Heredity 27:73–82CrossRefGoogle Scholar
  35. Talbot DR, Adang MJ, Slightom JL, Hall TC (1984) Size and organization of a multigene family encoding phaseolin, the major seed storage protein of Phaseolus vulgaris L. Mol Gen Genet 198:42–49CrossRefGoogle Scholar
  36. Tapia M, Gandarillas H, Alandia S, Cardozo A, Mujica R, Ortiz R, Otazu J, Rea J, Salas B, Zanabria E (1979) Quinua y kañiwa: Cultivos andinos. CIID-IICA, Bogota, ColumbiaGoogle Scholar
  37. Tomkins JP, Yu Y, Miller-Smith H, Frisch DA, Woo SS, Wing RA (1999a) A bacterial artificial chromosome library for sugarcane. Theor Appl Genet 99:419–424CrossRefGoogle Scholar
  38. Tomkins JP, Mahalingam R, Smith H, Goicoechea JL, Knap HT, Wing RA (1999b) A bacterial artificial chromosome library for soybean PI 437654 and identification of clones associated with cyst nematode resistance. Plant Mol Biol 41:25–32CrossRefGoogle Scholar
  39. Tomkins JP, Davis G, Main D, Yim Y, Duru N, Musket T, Goicoechea JL, Frisch DA, Coe EH Jr, Wing RA (2002) Construction and characterization of a deep-coverage bacterial artificial chromosome library for maize. Crop Sci 42:928–933Google Scholar
  40. Vacher JJ (1998) Responses of two main Andean crops, quinoa (Chenopodium quinoa Willd) and papa amarga (Solanum juzepczukii Buk.) to drought on the Bolivian Altiplano: significance of local adaptation. Agric Ecosyst Environ 68:99–108CrossRefGoogle Scholar
  41. Ward SM (2000) Allotetraploid segregation for single-gene morphological characters in quinoa (Chenopodium quinoa Willd.). Euphytica 116:11–16CrossRefGoogle Scholar
  42. Wobus U, Bäumlein H, Bassüner R, Heim U, Jung R, Müntz K, Saalbach G, Weschke W (1986) Characteristics of two types of legumin genes in the field bean (Vicia faba L. var. minor) genome as revealed by cDNA analysis. FEBS Lett 201:74–80CrossRefGoogle Scholar
  43. Woo S-S, Jiang J, Gill BS, Paterson AH, Wing RA (1994) Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucl Acids Res 22:4922–4931PubMedCrossRefGoogle Scholar
  44. Yang D, Parco A, Nandi S, Subudhi P, Zhu Y, Wang G, Huang N (1997) Construction of a bacterial artifical chromosome (BAC) library and identification of overlapping BAC clones with chromosome 4-specific RFLP markers in rice. Theor Appl Genet 95:1147–1154CrossRefGoogle Scholar
  45. Yoo EY, Kim S, Kim YH, Lee CJ, Kim B-D (2003) Construction of a deep coverage BAC library from Capsicum annuum, ‘CM334’. Theor Appl Genet 107:540–543PubMedCrossRefGoogle Scholar
  46. Yu Y, Tomkins JP, Waugh R, Frisch DA, Kudrna D, Kleinhofs A, Brueggeman RS, Muehlbauer GJ, Wise RP, Wing RA (2000) A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theor Appl Genet 101:1093–1099CrossRefGoogle Scholar
  47. Zhang H-B (2000) Construction and manipulation of large-insert bacterial clone libraries manual. Texas A&M University, College Station, TXGoogle Scholar
  48. Zhang H-B, Choi S, Woo S-S, Li Z, Wing RA (1996) Construction and characterization of two rice bacterial artificial chromosome libraries from the parents of a permanent recombinant inbred mapping population. Mol Breed 2:11–24CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • M. R. Stevens
    • 1
  • C. E. Coleman
    • 1
  • S. E. Parkinson
    • 1
    • 2
  • P. J. Maughan
    • 1
  • H.-B. Zhang
    • 3
  • M. R. Balzotti
    • 1
  • D. L. Kooyman
    • 4
  • K. Arumuganathan
    • 5
  • A. Bonifacio
    • 6
  • D. J. Fairbanks
    • 1
  • E. N. Jellen
    • 1
  • J. J. Stevens
    • 1
  1. 1.Department of Plant and Animal SciencesBrigham Young UniversityProvoUSA
  2. 2.Department of Plant and Microbial BiologyUniversity of California BerkeleyBerkeleyUSA
  3. 3.Department of Soil and Crop Sciences and Institute for Plant Genomics and Biotechnology, 2123 TAMUTexas A&M UniversityCollege StationUSA
  4. 4.Department of Physiology and Developmental BiologyBrigham Young UniversityProvoUSA
  5. 5.Flow and Image Cytometry Core LaboratoriesBenaroya Research Institute at Virginia MasonSeattleUSA
  6. 6.The Foundation for the Promotion and Investigation of Andean Products (PROINPA)La PazBolivia

Personalised recommendations