Theoretical and Applied Genetics

, Volume 112, Issue 7, pp 1258–1270 | Cite as

QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects

  • X. Y. Wan
  • J. M. Wan
  • L. Jiang
  • J. K. Wang
  • H. Q. Zhai
  • J. F. Weng
  • H. L. Wang
  • C. L. Lei
  • J. L. Wang
  • X. Zhang
  • Z. J. Cheng
  • X. P. Guo
Original Paper

Abstract

Grain length in rice plays an important role in determining rice appearance, milling, cooking and eating quality. In this study, the genetic basis of grain length was dissected into six main-effect quantitative trait loci (QTLs) and twelve pairs of epistatic QTLs. The stability of these QTLs was evaluated in four environments using an F7 recombinant inbred line (RIL) population derived from the cross between a Japonica variety, Asominori, and an Indica variety, IR24. Moreover, chromosome segment substitution lines (CSSLs) harboring each of the six main-effect QTLs were used to evaluate gene action of QTLs across eight environments. A major QTL denoted as qGL-3a, was found to express stably not only in the isogenic background of Asominori but also in the recombinant background of Asominori and IR24 under multiple environments. The IR24 allele at qGL-3a has a positive effect on grain length. Based on the test of advanced backcross progenies, qGL-3a was dissected as a single Mendelian factor, i.e., long rice grain was controlled by a recessive gene gl-3. High-resolution genetic and physical maps were further constructed for fine mapping gl-3 by using 11 simple sequence repeat (SSR) markers designed using sequence information from seven BAC/PAC clones and a BC4F2 population consisting of 2,068 individuals. Consequently, the gl-3 gene was narrowed down to a candidate genomic region of 87.5 kb long defined by SSR markers RMw357 and RMw353 on chromosome 3, which provides a basis for map-based cloning of this gene and for marker-aided QTL pyramiding in rice quality breeding.

Notes

Acknowledgements

We greatly appreciate Professor A. Yoshimura, Kyushu University, Japan, for kindly providing us with the RIL and CSSL populations and genotype data. This research was supported by grants from the National High Technology Research and Development Program of China (Nos. 2003AA222131 and 2003AA207020), and the National Natural Science Foundation of China (No. 30270811).

References

  1. Aluko G, Martinez C, Tohme J, Castano C, Bergman C, Oard JH (2004) QTL mapping of grain quality traits from the interspecific cross Oryza sativa×O. glaberrima. Theor Appl Genet 109:630–639CrossRefPubMedGoogle Scholar
  2. Causse MA, Fulton TM, Cho YG, Ahn SN, Wu KS, Xiao JH, Yu ZH, Ronald PC, Harrington SE, Second G, McCouch SR, Tanksley SD (1994) Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138:1251–1274PubMedGoogle Scholar
  3. Chen X, Temnykh S, Xu Y, Cho YG, McCouch SR (1997) Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Thero Appl Genet 95:553–567CrossRefGoogle Scholar
  4. Chen MS, Presting G, Barbazuk WB et al (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14:537–545CrossRefPubMedGoogle Scholar
  5. Cheng ZK, Dong FG, Langdon T, Ouyang S, Buell CR, Gu MH, Blattner FR, Jiang JM (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704CrossRefPubMedGoogle Scholar
  6. Dellapporta SL, Wood J, Hicks JB (1983) A plant DNA mini preparation: Version II. Plant Mol Biol Rep 1:19–21CrossRefGoogle Scholar
  7. Frary An, Nesbitt TC, Frary Am, Grandillo S, Knaap EVD, Cong B, Liu JP, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88CrossRefPubMedGoogle Scholar
  8. Frisch M, Bohn M, Melchinger AM (1999) Comparison of selection strategies for marker-assisted backcrossing of a gene. Crop Sci 39:1295–1301CrossRefGoogle Scholar
  9. Harlan J (1992) Crops & Man. American Society of Agronomy/Crop Science Society of American, MadisonGoogle Scholar
  10. Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush GS, Sasaki T (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 Population. Genetics 148:479–494PubMedGoogle Scholar
  11. Howell PM, Marshall DF, Lydiate DJ (1996) Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome 39:348–358PubMedCrossRefGoogle Scholar
  12. Huang N, Parco A, Mew T, Magpantay G, McCouch S, Guiderdoni E, Xu JC, Subudhi P, Angeles ER, Khush GS (1997) RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown planthopper resistance in a doubled haploid rice population. Mol Breed 3:105–113CrossRefGoogle Scholar
  13. Kroymann J, Mitchell-Olds T (2005) Epistasis and balanced polymorphism influencing complex trait variation. Nature 435:95–98CrossRefPubMedGoogle Scholar
  14. Kubo T, Nakamura K, Yoshimura A (1999) Development of a series of Indica chromosome segment substitution lines in Japonica background of rice. Rice Genet Newsl 16:104–106Google Scholar
  15. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181CrossRefPubMedGoogle Scholar
  16. Li ZK (2001) QTL mapping in rice: a few critical considerations. In: Rice genetics IV. Science Publishers, New Delhi, pp 153–171Google Scholar
  17. Li ZK, Yu SB, Lafitte HR, Huang L, Courtois B, Hittalmani S, Vijayakumar CHM, Liu GF, Wang GC, Shashidhar HE, Zhuang JY, Zheng KL, Singh VP, Sidhu JS, Srivantaneeyakul S, Khush GS (2003) QTL × environment interactions in rice. I. Heading date and plant height. Theor Appl Genet 108:141–153CrossRefPubMedGoogle Scholar
  18. Li JM, Thomson M, McCouch SR (2004a) Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics 168:2187–2195CrossRefGoogle Scholar
  19. Li JM, Xiao JH, Grandillo S, Jiang LY, Wan YZ, Deng QY, Yuan LP, McCouch SR (2004b) QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O. Sativa L.) and African (O. glaberrium S.) rice. Genome 47:697–704CrossRefGoogle Scholar
  20. Liu G, Wang L, Zhou Z, Leung H, Wang GL, He C (2004) Physical mapping of a rice lesion mimic gene, Spl1, to a 70-kb segment of rice chromosome 12. Mol Gen Genomics 272:108–115CrossRefGoogle Scholar
  21. Liu JP, Eck JV, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shape tomato fruit. Proc Natl Acad Sci USA 99:13302–13306CrossRefPubMedGoogle Scholar
  22. Luo YK, Zhu ZW, Chen N, Duan BW, Zhang LP (2004) Grain types and related quality characteristics of rice in China. Chinese J Rice Sci 18(2):135–139Google Scholar
  23. Mackill DJ, Ni JJ (2001) Molecular mapping and marker-assisted selection for major-gene traits in rice. In: Khush GS, Brar DS, Hardy B (eds) Rice genetics IV. Science Publishers, New Delhi, pp 137–151CrossRefGoogle Scholar
  24. McCouch SR, Teytelman L, Xu YB et al (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207CrossRefPubMedGoogle Scholar
  25. McKenzie KS, Rutger JN (1983) Genetic analysis of amylose content, alkali spreading score, and grain dimensions in rice. Crop Sci 23:306–313CrossRefGoogle Scholar
  26. Redoña ED, Mackill DJ (1998) Quantitative trait locus analysis for rice panicle and grain characteristics. Theor Appl Genet 96:957–963CrossRefGoogle Scholar
  27. Sanguinetti CJ, Dias NE, Simpson AJG (1994) Rapid silver staining and recover of PCR products separated on polyacrylamide gels. Biotechniques 17:915–919Google Scholar
  28. Singh K, Ishii T, Parco A, Huang N, Brar D, Khush GS (1996) Centromere mapping and orientation of the molecular linkage map of rice (Oryza sativa L.). Proc Natl Acad Sci USA 93:6163–6168CrossRefPubMedGoogle Scholar
  29. Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd-6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the αsubunit of protein kinase CK2. Proc Natl Acad Sci USA 98:7922–7927CrossRefPubMedGoogle Scholar
  30. Takeuchi Y, Lin SY, Sasaki T, Yano M (2003) Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice. Thero Appl Genet 107:1174–1180CrossRefGoogle Scholar
  31. Tan YF, Xing YZ, Li JX, Yu SB, Xu CG, Zhang QF (2000) Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theor Appl Genet 101:823–829CrossRefGoogle Scholar
  32. Tsunematsu H, Yoshimura A, Harushima Y, Nagamura Y, Kurata N, Yano M, Sasaki T, Iwata N (1996) RFLP framework map using recombinant inbred lines in rice. Breed Sci 46:279–284Google Scholar
  33. Wan XY, Wan JM, Su CC, Wang CM, Shen WB, Li JM, Wang HL, Jiang L, Liu SJ, Chen LM, Yasui H, Yoshimura A (2004a) QTL detection for eating quality of cooked rice in a population of chromosome segment substitution lines. Theor Appl Genet 110:71–79CrossRefGoogle Scholar
  34. Wan XY, Weng JF, Zhai HQ, Wan JM (2004b) Fine mapping of pgwc-8 gene affecting percentage of grains with chalkiness in rice (Oryza sativa. L), Rice. Genet Newsl 21, (in press)Google Scholar
  35. Wan XY, Wan JM, Weng JF, Jiang L, Bi JC, Wang CM, Zhai HQ (2005) Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments . Theor Appl Genet 110:1334–1346CrossRefPubMedGoogle Scholar
  36. Wang DL, Zhu J, Li ZK, Paterson AH (1999) Mapping QTLs with epistatic effects and QTL by environment interactions by mixed linear model approaches. Theor Appl Genet 99:1255–1264CrossRefGoogle Scholar
  37. Wu JZ, Maehara T, Shimokawa T et al (2002) A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell 14:525–535CrossRefPubMedGoogle Scholar
  38. Yamamoto R, Horisue N, Ikeda R (1995) Rice Breeding Manual. Miscellaneous Publication of the National Agriculture Research Centre in Japan. No. 30, OctoberGoogle Scholar
  39. Yamamoto T, Kuboki Y, Lin XY, Sasaki T, Yano M (1998) Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. Theor Appl Genet 97:37–44CrossRefGoogle Scholar
  40. Yamamoto T, Lin HX, Sasaki T, Yano M (2000) Identification of heading date quantitative trait loci Hd-6 and characterization of its epistatic interactions with Hd-2 in rice using advanced backcross progency. Genetics 154:885–891PubMedGoogle Scholar
  41. Yan LL, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268CrossRefPubMedGoogle Scholar
  42. Yan LL, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644CrossRefPubMedGoogle Scholar
  43. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna Lisa, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd-1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant cell 12:2473–2483CrossRefPubMedGoogle Scholar
  44. Zeng L, Yin Z, Chen J, Leung H, Wang GL (2002) Fine genetic mapping and physical delimitation of the lesion mimic gene Spl11 to a 160 kb DNA segment of the rice genome. Mol Gen Genomics 268:253–261CrossRefGoogle Scholar
  45. Zhang QF, Shen BZ, Dai XK, Mei MH, Maroof MAS, Li ZB (1994) Using bulked extremes and recessive class to map genes for photoperiod- sensitive genic male sterility in rice. Proc Natl Acad Sci USA 91:8675–8679PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • X. Y. Wan
    • 1
    • 2
  • J. M. Wan
    • 1
    • 2
  • L. Jiang
    • 1
  • J. K. Wang
    • 2
  • H. Q. Zhai
    • 2
  • J. F. Weng
    • 1
  • H. L. Wang
    • 1
  • C. L. Lei
    • 2
  • J. L. Wang
    • 2
  • X. Zhang
    • 2
  • Z. J. Cheng
    • 2
  • X. P. Guo
    • 2
  1. 1.National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
  2. 2.Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations