Theoretical and Applied Genetics

, Volume 111, Issue 4, pp 795–803 | Cite as

Linkage map construction in allotetraploid creeping bentgrass (Agrostis stolonifera L.)

  • N. Chakraborty
  • J. Bae
  • S. Warnke
  • T. Chang
  • G. Jung
Original Paper


Creeping bentgrass (Agrostis stolonifera L.) is one of the most adapted bentgrass species for use on golf course fairways and putting greens because of its high tolerance to low mowing height. It is a highly outcrossing allotetraploid species (2n=4x=28, A2 and A3 subgenomes). The first linkage map in this species is reported herein, and it was constructed based on a population derived from a cross between two heterozygous clones using 169 RAPD, 180 AFLP, and 39 heterologous cereal and 36 homologous bentgrass cDNA RFLP markers. The linkage map consists of 424 mapped loci covering 1,110 cM in 14 linkage groups, of which seven pairs of homoeologous chromosomes were identified based on duplicated loci. The numbering of all seven linkage groups in the bentgrass map was assigned according to common markers mapped on syntenous chromosomes of ryegrass and wheat. The number of markers linked in coupling and repulsion phase was in a 1:1 ratio, indicating disomic inheritance. This supports a strict allotetraploid inheritance in creeping bentgrass, as suggested by previous work based on chromosomal pairing and isozymes. This linkage map will assist in the tagging and eventually in marker-assisted breeding of economically important quantitative traits like disease resistance to dollar spot (Sclerotinia homoeocarpa F.T. Bennett) and brown patch (Rhizoctonia solani Kuhn).


Agrostis stolonifera L. Creeping bentgrass Allotetraploid Linkage map Homoeologous chromosomes Molecular markers 



Our sincere thanks go to Joe Curley for technical assistance. Funding for this project was provided by Hatch Formula Fund (WIS04777) and by the Wisconsin Turfgrass Association.


  1. Alm V, Fang C, Busso CS, Devos KM, Vollan K, Grieg Z, Rognli OA (2003) A linkage map of meadow fescue (Festuca pratensis Huds.) and comparative mapping with other Poaceae species. Theor Appl Genet 108:25–40CrossRefPubMedGoogle Scholar
  2. Armstead IP, Turner LB, Farrell M, Skot L, Gomez P, Montoya, Donnison IS, King IP, Humphreys MO (2004) Synteny between a major heading date QTL in perennial ryegrass (Lolium perenne L.) and the Hd3 heading date locus in rice. Theor Appl Genet 108:822–828CrossRefPubMedGoogle Scholar
  3. Barrett B, Griffiths A, Schreiber M, Ellison N, Mercer C, Bouton J, Ong B, Forster J, Sawbridge T, Spangenberg G, Bryan G, Woodfield D (2004) A microsatellite map of white clover. Theor Appl Genet 109:596–608CrossRefPubMedGoogle Scholar
  4. Benham J, Jeung J-U, Jasieniuk M, Kanazin V, Blake T (1999) Genographer: a graphical tool for automated AFLP and microsatellite analysis. J Agric Genomics 4: html
  5. Bonos SA, Plumley KA, Meyer WA (2002) Ploidy determination in Agrostis using flow cytometry and morphological traits. Crop Sci 42:192–196PubMedGoogle Scholar
  6. Brubaker CL, Paterson AH, Wendel JF (1999) Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome 42:184–203CrossRefGoogle Scholar
  7. Casler M, Rangel Y, Stier J, Jung G (2003) RAPD marker diversity among creeping bentgrass clones. Crop Sci 43:688–693Google Scholar
  8. Chakraborty N, Chang T, Jung G (2003) Construction of linkage map and QTL mapping of dollar spot resistance in creeping bentgrass. ASA-CSSA-SSSA annual meeting. Abstract, p 389Google Scholar
  9. Cogan NOI, Smith KF, Yamada T, Francki MG, Vecchies AC, Jones ES, Spangenberg GC, Forster JW (2005) QTL analysis and comparative genomics of herbage quality traits in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 110:364–380CrossRefPubMedGoogle Scholar
  10. Cook R (1996) Oregon seed certification. Oregon State University, CorvallisGoogle Scholar
  11. Dumsday JL, Smith KF, Forster JW, Jones ES (2003) SSR based genetic linkage analysis of resistance to crown rust (Puccinia coronata f. sp. lolii) in perennial ryegrass (Lolium perenne) Plant Pathol 52:628–637CrossRefGoogle Scholar
  12. Gale MD, Devos KM (1998) Plant comparative genetics after 10 years. Science 282:656–659CrossRefPubMedGoogle Scholar
  13. Hayward MD, Mcadem NJ, Jones JG, Evans C, Evans GM, Forester JW, Ustin A, Hossain KG, Quader B, Stammers M, Will JK (1994) Genetic markers and the selection of quantitative traits in forage grasses. Euphytica 77:269–275Google Scholar
  14. Hitchcock (1951) Manual of the grasses of the United States. USDA Misc. Publ. 200. US Government Printing Office, Washington, DCGoogle Scholar
  15. Inoue M, Gao Z, Hirata M, Fujimori M, Cai H (2004) Construction of a high density linkage map of Italian ryegrass (Lolium multiflorum Lam.) using restriction fragment length polymorphism, amplified fragment length polymorphism, and telomeric repeat associated sequence markers. Genome 47:57–65CrossRefPubMedGoogle Scholar
  16. Jones K (1956a) Species determination in Agrostis. Part I. Cytological relationships in Agrostis canina L. J Genet 54:370–376Google Scholar
  17. Jones K (1956b) Species determination in Agrostis. Part II. The significance of chromosome pairing in the tetraploid hybrids of Agrostis canina subsp. Montana Hartm. A. tenuis Sibth. and A. stolonifera L. J Genet 54:377–393Google Scholar
  18. Jones K (1956c) Species determination in Agrostis. Part III. Agrostis gigantea Roth. and its hybrids with A. tenuis Sibth. and A. stolonifera L. J Genet 54:394–399Google Scholar
  19. Jones ES, Mahoney NL, Hayward MD, Armstead HI, Jones JG, Humphreys MO, King IP, Kishida T, Yamada T, Balfourier F, Charmet G, Foster JW (2002) An enhanced molecular marker based genetic map of perennial ryegrass (Lolium perenne) reveals comparative relationships with other Poaceae genomes. Genome 45:282–295CrossRefPubMedGoogle Scholar
  20. Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta I, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li CJ, Ohtsuki K, Shishiki T, Otomo Y, Murakami K, Iida Y, Sugano S, Fujimura T, Suzuki Y, Tsunoda Y, Kurosaki T, Kodama T, Masuda H, Kobayashi M, Xie Q, Lu M, Narikawa R, Sugiyama A, Mizuno K, Yokomizo S, Niikura J, Ikeda R, Ishibiki J, Kawamata M, Yoshimura A, Miura J, Kusumegi T, Oka M, Ryu R, Ueda M, Matsubara K, KawaiJ, Carninci P, Adachi J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashidume W, Hayatsu N, Imotani K, Ishii Y, Itoh M, Kagawa I, Kondo S, Konno H, Miyazaki A, Osato N, Ota Y, Saito R, Sasaki D, Sato K, Shibata K, Shinagawa A, Shiraki T, Yoshino M, Hayashizaki Y (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301:376–379CrossRefPubMedGoogle Scholar
  21. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175Google Scholar
  22. Larson SR, Waldron BL, Monsen SB, St. John L, Palazzo AJ, McCracken CL, Harrison RD (2001) AFLP variation in agamospermous and dioecious bluegrass of western North America. Crop Sci 41:1300–1305Google Scholar
  23. Lespinasse D, Grivet L, Troispoux V, Rodier-Goud M, Pinard F, Seguin M (2000) Identification of QTLs involved in the resistance to South American leaf blight (Microcyclus ulei) in the rubber tree. Theor Appl Genet 100:975–984CrossRefGoogle Scholar
  24. Masterson J (1994) Stomatal size in fossil plants: evidence of polyploidy in majority of angiosperms. Science 264:421–424Google Scholar
  25. Osborne TC, Kole C, Parkin IAP, Sharpe AG, Kuiper M, Lydiate DJ, Trick M (1997) Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics 146:1123–1129PubMedGoogle Scholar
  26. Qu L, Hancock JF (2001) Detecting and mapping repulsion-phase linkage in polyploids with polysomic inheritence. Theor Appl Genet 103:136–143CrossRefGoogle Scholar
  27. Rayapati PJ, Gregory JW, Lee M, Wise RP (1995) A linkage map of diploid oat Avena based on RFLP loci and a locus conferring resistance to Puccinia coronata var. avenae. Theor Appl Genet 89:831–837Google Scholar
  28. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018PubMedGoogle Scholar
  29. Scheef E, Casler MD, Jung G (2003) Development of species-specific SCAR markers in bentgrass. Crop Sci 43:345–349Google Scholar
  30. Sim S, Chang T, Curley J, Warnke SE, Barker RE, Jung G (2005) Chromosomal rearrangements differentiating ryegrass genome from the Triticeae, oat, and rice genomes using common heterologous RFLP probes. Theor Appl Genet 110:1011–1019CrossRefPubMedGoogle Scholar
  31. Sorrells ME (1992) Development and application of RFLPs in polyploids. Crop Sci 32:1086–1091Google Scholar
  32. Sorrells ME, Rota ML, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold, Miftahudin JD, Mahmoud A, Ma X, Gustafson PJ, Qi LL, Echalier B, Gill BS, Matthews DE, Lazo GR, Chao S, Anderson OD, Edwards H, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Zhang D, Nguyen HT, Peng J, Lapitan NLV, Gonzalez-Hernandez JL, Anderson JA, Hossain K, Kalavacharla V, Kianian SF, Choi DW, Close TJ, Dilbirligi M, Gill KS, Steber C, Walker-Simmons MK, McGuire P E, Qualset CO (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827PubMedGoogle Scholar
  33. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517PubMedGoogle Scholar
  34. Van Deynze AE, Dubcovsky J, Gill KS, Nelson JC, Sorrells ME, Dvorak J, Gill BS, Lagudah ES, McCouch SR, Appels R (1995a) Molecular genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38:45–59Google Scholar
  35. Van Deynze AE, Nelson JC, O‘Donoghue LS, Ahan S, Siripoonwiwat W, Harrington SE, Yglesias ES, Braga DP, McCouch SR, Sorrells ME (1995b) Comparative mapping in grasses. Oat relationships. Mol Gen Genet 249:349–356CrossRefGoogle Scholar
  36. Van Deynze AE, Nelson JC, Yglesias ES, Harrington SE, Braga DP, McCouch SR, Sorrells ME (1995c) Comparative mapping in grasses. Wheat relationships. Mol Gen Genet 248:744–754Google Scholar
  37. Van Deynze AE, Sorrells ME, Park WD, Ayres NM, Fu H, Cartinhour SW, Paul E, McCouch SR (1998) Anchor probes for comparative mapping of grass genera. Theor Appl Genet 97:356–369CrossRefGoogle Scholar
  38. Van Ooijen JW, Voorrips RE (2001) JoinMap 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The NetherlandsGoogle Scholar
  39. Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot L, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedGoogle Scholar
  40. Wang Z, Casler MD, Stier JC, Gregos JS, Millett SM (2005) Genotypic variation for snow mold reaction among creeping bentgrass clones. Crop Sci 45:399–406Google Scholar
  41. Warnke S (2003) Creeping bentgrass (Agrostis stolonifera L.). In: Casler MD, Duncan RR (eds) Turfgrass biology, genetics, and breeding. Wiley, Hoboken pp 175–185Google Scholar
  42. Warnke SE, Douches DS, Branham BE (1998) Isozyme analysis support allotetraploid inheritance in tetraploid creeping bentgrass (Agrostis palustris Huds.). Crop Sci 38:801–805Google Scholar
  43. Warnke SE, Barker RE, Jung G, Sim SC, Rouf Mian MA, Saha MC, Brilman LA, Dupal MP, Forster JW (2004) Genetic linkage mapping of an annual × perennial ryegrass population. Theor Appl Genet 109:294–304CrossRefPubMedGoogle Scholar
  44. Wu KK, Burnquist W, Sorrells ME, Tew TL, Moore PH, Tanksley SD (1992) The detection and estimation of linkage in polyploids using single-dosage restriction fragments. Theor Appl Genet 83:294–300CrossRefGoogle Scholar
  45. Zhang, D, Ayele, M, Tefera, H, Nguyen, HT 2001RFLP linkage map of the Ethiopian cereal tef [Eragrostis tef (Zucc) Trotter]Theor Appl Genet102957CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • N. Chakraborty
    • 1
  • J. Bae
    • 1
  • S. Warnke
    • 2
  • T. Chang
    • 1
  • G. Jung
    • 1
  1. 1.Department of Plant PathologyUniversity of WisconsinMadisonUSA
  2. 2.USDA–ARS US National ArboretumWashingtonUSA

Personalised recommendations