Advertisement

Theoretical and Applied Genetics

, Volume 111, Issue 3, pp 511–520 | Cite as

Genetic mapping of QTLs controlling horticultural traits in diploid roses

  • M. L. Dugo
  • Z. Satovic
  • T. Millán
  • J. I. Cubero
  • D. Rubiales
  • A. Cabrera
  • A. M. Torres
Original Paper

Abstract

A segregating progeny set of 96 F1 diploid hybrids (2n=2x=14) between “Blush Noisette” (D10), one of the first seedlings from the original “Champneys’ Pink Cluster”, and Rosa wichurana (E15), was used to construct a genetic linkage map of the rose genome following a “pseudo-testcross” mapping strategy. A total of 133 markers (130 RAPD, one morphological and two microsatellites) were located on the 14 linkage groups (LGs) of the D10 and E15 maps, covering total map lengths of 388 and 260 cM, respectively. Due to the presence of common biparental markers the homology of four LGs between parental maps (D10-1/E15-1 to D10-4/E15-4) could be inferred. Four horticulturally interesting quantitative traits, flower size (FS), days to flowering (DF), leaf size (LS), and resistance to powdery mildew (PM) were analysed in the progeny in order to map quantitative trait loci (QTLs) controlling these traits. A total of 13 putative QTLs (LOD>3.0) were identified, four for FS, two for flowering time, five for LS, and two for resistance to PM. Possible homologies between QTLs detected in the D10 and E15 maps could be established between Fs1 and Fs3, Fs2 and Fs4, and Ls1 and Ls3. Screening for pairwise epistatic interactions between loci revealed additional, epistatic QTLs (EQTLs) for DF and LS that were not detected in the original QTL analysis. The genetic maps developed in this study will be useful to add new markers and locate genes for important traits in the genus providing a practical resource for marker-assisted selection programs in roses.

Keywords

Rosa Molecular markers Genetic map Pseudo-testcross QTLs 

Notes

Acknowledgements

This study was supported by the Spanish Instituto Nacional de Investigaciones Agrarias, Project No. RTA01-126. We would like to thank J. Prieto and C. Martínez for technical support and Dr. A. Di Pietro for critical reading of the manuscript.

References

  1. Aranzana MJ, Pineda A, Cosson E, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni A, Arús P (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825Google Scholar
  2. Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martín A (2002) Preliminary genetic linkage map of Miscanthus sinensis with RAPD markers. Theor Appl Genet 105:946–952Google Scholar
  3. Cardy BJ, Stuber CW, Goodman MM (1980) Techniques for starch-gel electrophoresis of enzymes from maize (Zea mays L.). Mimeo Series, North Carolina State University Department of Statistics, RaleighGoogle Scholar
  4. Chase K, Adler FR, Lark KG (1997) Epistat: A computer program for identifying and testing interactions between pairs of quantitative trait loci. Theor Appl Genet 94:724–730Google Scholar
  5. Cheng FS, Brown SK, Weeden NF (1997) A DNA extraction protocol from various tissues in woody species. Hortscience 32:921–922Google Scholar
  6. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedGoogle Scholar
  7. Clayton JW, Tretiak DN (1972) Amino-citrate buffers for pH control in starch-gel electrophoresis. J Fish Res Bd Can 29:1169–1172Google Scholar
  8. Crespel L, Chirollet M, Durel CE, Zhang D, Meynet J, Gudin S (2002) Mapping of qualitative and quantitative phenotypic traits in Rosa using AFLP markers. Theor Appl Genet 105:1207–1214Google Scholar
  9. Debener T (1999) Genetic analysis of horticulturally important morphological and physiological characters in diploid roses. Gartenbauwissenschaft 64:14–20Google Scholar
  10. Debener T, Mattiesch L (1999) Construction of a genetic linkage map for roses using RAPD and AFLP markers. Theor Appl Genet 99:891–899Google Scholar
  11. Debener T, Bartels C, Mattiesch L (1996) RAPD analysis of genetic variation between a group of rose cultivars and selected wild rose species. Mol Breed 2:321–327CrossRefGoogle Scholar
  12. Debener T, Janakiram T, Mattiesch L (2000) Sports and seedlings of rose varieties analysed with molecular markers. Plant Breed 119:71–74CrossRefGoogle Scholar
  13. Debener T, von Malek B, Mattiesch L, Kaufmann H (2001) Genetic and molecular analysis of important characters in roses. Acta Hort 547:45–49Google Scholar
  14. De Vries DP, Dubois LAM (1978) On the transmission of the yellow flower colour from Rosa foetida to recurrent flowering hybrid tea-roses. Euphytica 27:205–210CrossRefGoogle Scholar
  15. De Vries DP, Dubois LAM (1984) Inheritance of the recurrent flowering and Moss characters in F1 and F2 hybrid Tea × R. centifolia muscosa (Aiton) Seringe populations. Gartenbauwissenschaft 49:97–100Google Scholar
  16. Esselink GD, Smulders MJM, Vosman B (2003) Identification of cut rose (Rosa hybrida) and rootstock varieties using sequence tagged microsatellite site markers. Theor Appl Genet 106:227–286Google Scholar
  17. Gottlieb LD (1973) Enzyme differentiation and phylogeny in Clarkia franciscana, C. rubicundaand C. amoena. Evolution 27:205–214Google Scholar
  18. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross mapping strategy and RAPD markers. Genetics 137:1121–1137PubMedGoogle Scholar
  19. Gudin S (2000) Rose: genetics and breeding. Plant Breed Rev 17:159–189Google Scholar
  20. Guilford P, Prakash S, Zhu JM, Gardiner S, Basset H, Forster R (1997) Microsatellites in Malus × domestica (apple): abundance polymorphisms and cultivar identification. Theor Appl Genet 94:249–254Google Scholar
  21. Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455PubMedGoogle Scholar
  22. Joobeur T, Viruel MA, De Vicente MC, Jauregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I, Quarta R, Dirlewanger E, Arús P (1998) Construction of a saturated linkage map for Prunus using an almond × peach F2 progeny. Theor Appl Genet 97:1034–1041Google Scholar
  23. Kianian SF, Quiros CF (1992) Generation of a Brassica oleracea composite RFLP map: Linkage arrangements among various populations and evolutionary implications. Theor Appl Genet 84:544–554Google Scholar
  24. Knott SA, Neale DB, Sewell MH, Haley CS (1997) Multiple marker mapping of quantitative trait loci in an outbred pedigree of loblolly pine. Theor Appl Genet 94:810–820Google Scholar
  25. Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199PubMedGoogle Scholar
  26. Lark KG, Chase K, Adler F, Mansur LM, Orf JH (1995) Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another. Proc Natl Acad Sci USA 92:4656–4660PubMedGoogle Scholar
  27. Lewis WH, Basye RE (1961) Analysis of nine crosses between diploid Rosa species. Proc Am Soc Hort Sci 78:572–579Google Scholar
  28. Linde M, Debener T (2003) Isolation and identification of eight races of powdery mildew of roses (Podosphaera pannosa) (Wallr:Fr) de Bary and the genetic analysis of the resistance gene Rpp1. Theor Appl Genet 107:256–262Google Scholar
  29. Malek VB, Debener T (2000) Identification of molecular markers linked to Rdr1, a gene conferring resistance to blackspot in roses. Theor Appl Genet 101:977–983Google Scholar
  30. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832PubMedGoogle Scholar
  31. Pozárková D, Koblízková A, Román B, Torres AM, Lucretti S, Lysák M, Dolezel J, Macas J (2002) Development and characterization of microsatellite markers from chromosome l-specific DNA libraries of Vicia faba. Biologia Plantarum 45:337–345Google Scholar
  32. Rajapakse S, Byrne DH, Zhang L, Anderson N, Arumuganathan K, Ballard RE (2001) Two genetic linkage maps of tetraploid roses. Theor Appl Genet 103:575–583Google Scholar
  33. Selander RK, Smith MH, Yang SY, Johnson WE, Gentry JB (1971) Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation in the old-field mouse (Peromyscus polionotus). Univ Texas Publ 7103:49–90Google Scholar
  34. Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach [ Prunus persica (L.) Batsch]. Theor Appl Genet 101:421–428Google Scholar
  35. Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744Google Scholar
  36. Torres AM, Weeden NF, Martín A (1993) Linkage among isozyme, RFLP and RADP markers in Vicia faba. Theor Appl Genet 85:937–945Google Scholar
  37. Van Ooijen JW (1992) Accuracy of mapping quantitative trait loci in autogamous species. Theor Appl Genet 84:803–811Google Scholar
  38. Van Ooijen JW, Maliepaard C (1996) MapQTL, Version 3.0: software for the calculation of QTL positions on genetic maps. CPRO-DLO, Wageningen The NetherlandsGoogle Scholar
  39. Van Ooijen JW, Voorrips VE (2001) JoinMap 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The NetherlandsGoogle Scholar
  40. Voorrips RE (2002) MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78CrossRefPubMedGoogle Scholar
  41. Weeden NF, Emmo AC (1985) Isozyme characterization of Kentucky bluegrass cultivars. Can J Plant Sci 65:985–994Google Scholar
  42. Wendel JF, Weeden NF (1990) Visualization and interpretation of plant isozymes. In: Isozymes in plant biology Dioscorides Press, Portland, Oregon, pp 5–45Google Scholar
  43. Yin T, Huang M, Wang M, Zhu L-H, Zeng Z-B, Wu R (2001) Preliminary interespecific genetic maps of the Populus genomes constructed from RAPD markers. Genome 44:602–609CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • M. L. Dugo
    • 1
  • Z. Satovic
    • 2
  • T. Millán
    • 3
  • J. I. Cubero
    • 3
  • D. Rubiales
    • 4
  • A. Cabrera
    • 3
  • A. M. Torres
    • 1
  1. 1.Departamento de Mejora y AgronomíaCIFA-Alameda del Obispo (IFAPA)CórdobaSpain
  2. 2.Department of Seed Science and TechnologyFaculty of AgricultureZagrebCroatia
  3. 3.Departamento de GenéticaE.T.S.I.A.MCórdobaSpain
  4. 4.CSIC-Instituto de Agricultura SostenibleCórdobaSpain

Personalised recommendations