Theoretical and Applied Genetics

, Volume 111, Issue 2, pp 196–205 | Cite as

Molecular cytogenetic analysis of Brassica rapa-Brassica oleracea var. alboglabra monosomic addition lines

  • Robert HasterokEmail author
  • Elzbieta Wolny
  • Sylwia Kulak
  • Aleksandra Zdziechiewicz
  • Jolanta Maluszynska
  • Waheeb K. Heneen
Original Paper


Interspecific alien chromosome addition lines can be very useful for gene mapping and studying chromosome homoeology between closely related species. In this study we demonstrate a simple but robust manner of identifying individual C-genome chromosomes (C5, C8 and C9) in the A-genome background through the simultaneous use of 5S and 25S ribosomal probes on mitotic and meiotic chromosomes of three different Brassica rapa-B. oleracea var. alboglabra monosomic addition lines. Sequential silver staining and fluorescence in situ hybridisation indicated that 18S-5.8S-25S rRNA genes on the additional chromosome C9 are expressed in the A-genome background. Meiotic behaviour of the additional chromosomes was studied in pollen mother cells at diakinesis and metaphase I. In all of the addition lines the alien chromosome was most frequently observed as a univalent. The alien chromosome C5, which carries an intercalary 5S rDNA locus, occasionally formed trivalents that involved either rDNA- or non rDNA-carrying chromosomes from the A genome. In the case of chromosomes C8 and C9, the most frequently observed intergenomic associations involved the regions occupied by 18S-5.8S-25S ribosomal RNA genes. It is possible that not all such associations represent true pairing but are remnants of nucleolar associations from the preceding interphase. Variations in the numbers and distribution of 5S and 25S rDNA sites between cultivars of B. oleracea, B. oleracea var. alboglabra and B. rapa are discussed.


Nucleolus Organiser Region rDNA Locus rDNA Site Alien Chromosome Chromosome Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are indebted to Dr. Glyn Jenkins (University of Wales Aberystwyth, UK) and anonymous reviewers for their valuable comments on the manuscript. The authors also acknowledge financial support from the Royal Swedish Academy of Agriculture and Forestry (award to R.H. and W.K.H. 2002), Einar and Inga Nilssons Foundation (award to R.H. and W.K.H. 2003–2004) as well as Polish National Committee of Scientific Research (grant 3 PO4C 013 22). The experiments conducted herein conformed to accepted practices in both Poland and Sweden.


  1. Alvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417–434CrossRefPubMedGoogle Scholar
  2. Armstrong SJ, Fransz P, Marshall DF, Jones GH (1998) Physical mapping of DNA repetitive sequences to mitotic and meiotic chromosomes of Brassica oleracea var. alboglabra by fluorescence in situ hybridisation. Heredity 81:666–673CrossRefGoogle Scholar
  3. Chen ZJ, Pikaard CS (1997) Transcriptional analysis of nucleolar dominance in polyploid plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc Natl Acad Sci USA 94:3442–3447CrossRefPubMedGoogle Scholar
  4. Chen BY, Heneen WK, Jonsson R (1988) Resynthesis of Brassica napus L. through interspecific hybridization between B. alboglabra Bailey and B. campestris L. with special emphasis on seed colour. Plant Breed 101:52–59Google Scholar
  5. Chen BY, Heneen WK, Simonsen V (1989) Comparative and genetic studies of isozymes in resynthesized and cultivated Brassica napus L., B. campestris L. and B. alboglabra Bailey. Theor Appl Genet 77:673–679Google Scholar
  6. Chen BY, Simonsen, V, Lannér-Herrera C, Heneen WK (1992) A Brassica campestris-alboglabra addition line and its use for gene mapping, intergenomic gene transfer and generation of trisomics. Theor Appl Genet 84:592–599Google Scholar
  7. Chen BY, Cheng BF, Jørgensen RB, Heneen WK (1997a) Production and cytogenetics of Brassica campestris-alboglabra chromosome addition lines. Theor Appl Genet 94:633–640CrossRefGoogle Scholar
  8. Chen BY, Jørgensen RB, Cheng BF, Heneen WK (1997b) Identification and chromosomal assignment of RAPD markers linked with a gene for seed colour in a Brassica campestris-alboglabra addition line. Hereditas 126:133–138CrossRefGoogle Scholar
  9. Cheng BF, Heneen WK (1995) Satellited chromosomes, nucleolus organizer regions and nucleoli of Brassica campestris L., B. nigra (L.) Koch, and Sinapis arvensis. Hereditas 122:113–118CrossRefGoogle Scholar
  10. Cheng BF, Chen BY, Heneen WK (1994a) Addition of Brassica alboglabra Bailey chromosomes to B. campestris L. with special emphasis on seed colour. Heredity 73:185–189Google Scholar
  11. Cheng BF, Heneen WK, Chen BY (1994b) Meiotic studies on a Brassica campestris-alboglabra monosomic addition line and derived B. campestris primary trisomics. Genome 37:584–589Google Scholar
  12. Cheng BF, Heneen WK, Chen BY (1995a) Mitotic karyotypes of Brassica campestris and Brasica alboglabra and identification of the B. alboglabra chromosome in an addition line. Genome 38:313–319Google Scholar
  13. Cheng BF, Heneen WK, Pedersen C (1995b) Ribosomal RNA gene loci and their nucleolar activity in Brassica alboglabra Bailey. Hereditas 123:169–173CrossRefGoogle Scholar
  14. Cuadrado A, Jouve N (1997) Distribution of highly repeated DNA sequences in species of the genus Secale. Genome 40:309–317PubMedGoogle Scholar
  15. Dagne K, Heneen WK (1992) The karyotype and nucleoli of Guizotia abyssinica (Compositae). Hereditas 117:73–83Google Scholar
  16. Fourel G, Lebrun E, Gilson E (2002) Protosilencers as building blocks for heterochromatin. Bioessays 24:828–835CrossRefPubMedGoogle Scholar
  17. Fukui K, Nakayama S, Ohmido N, Yoshiaki H, Yamabe M (1998) Quantitative karyotyping of three diploid Brassica species by imaging method and localization of 45S rDNA loci on the identified chromosomes. Theor Appl Genet 96:325–330CrossRefGoogle Scholar
  18. Gao D, Guo D, Jung C (2001) Monosomic addition lines of Beta corolifolia Zoss in sugar beet: cytological and molecular-marker analysis. Theor Appl Genet 103:240–247CrossRefGoogle Scholar
  19. Gerlach WL, Dyer TA (1980) Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res 8:4851–4865PubMedGoogle Scholar
  20. Hall MJ, Parker JS (1995) Stable chromosome fission associated with rDNA mobility. Chromosome Res 3:417–422CrossRefPubMedGoogle Scholar
  21. Hanson RE, Islam-Faridi MN, Percival EA, Crane CF, Ji Y, McKnight TD, Stelly DM, Price HJ (1996) Distribution of 5S and 18S-28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and its putative diploid ancestors. Chromosoma 105:55–61CrossRefPubMedGoogle Scholar
  22. Harrison GE, Heslop-Harrison JS (1995) Centromeric repetitive DNA sequences in the genus Brassica. Theor Appl Genet 90:157–165CrossRefGoogle Scholar
  23. Hasterok R, Maluszynska J (1999) Activation of silent rRNA genes in Brassica species. In: Abstr 2nd Eur Cytogenet Conf, Vienna, Austria. Cytogenet Cell Genet 85:135Google Scholar
  24. Hasterok R, Maluszynska J (2000a) Nucleolar dominance does not occur in root tip cells of allotetraploid Brassica species. Genome 43:574–579CrossRefGoogle Scholar
  25. Hasterok R, Maluszynska J (2000b) Cytogenetic analysis of diploid Brassica species. Acta Biol Cracov Ser Bot 42:145–163Google Scholar
  26. Hasterok R, Maluszynska J (2000c) Cytogenetic markers of Brassica napus chromosomes. J Appl Genet 41:1–9Google Scholar
  27. Hasterok R, Maluszynska J (2000d) Different rRNA gene expression in primary and adventitious roots of Allium cepa L. Folia Histochem Cytobiol 38:181–184Google Scholar
  28. Hasterok R, Jenkins G, Langdon T, Jones RN, Maluszynska J (2001) Ribosomal DNA is an effective marker of Brassica chromosomes. Theor Appl Genet 103:486–490CrossRefGoogle Scholar
  29. Hasterok R, Langdon T, Taylor S, Jenkins G (2002) Combinatorial labelling of DNA probes enables multicolour fluorescence in situ hybridisation in plants. Folia Histochem Cytobiol 40:319–23PubMedGoogle Scholar
  30. Heneen WK, Brismar K (2001) Maternal and embryonal control of seed colour by different Brassica alboglabra chromosomes. Plant Breed 120:325–329CrossRefGoogle Scholar
  31. Heneen WK, Jørgensen RB (2001) Cytology, RAPD, and seed colour of progeny plants from Brassica rapa-alboglabra aneuploids and development of monosomic addition lines. Genome 44:1007–1021CrossRefPubMedGoogle Scholar
  32. Heneen WK, Chen, BY, Cheng BF, Jonsson A, Simonsen V, Jørgensen RB, Davik J (1995) Characterization of the A and C genomes of Brassica campestric and B. alboglabra. Hereditas 123:251–267CrossRefGoogle Scholar
  33. Hizume M, Sato S, Tanaka A (1980) A highly reproducible method of nucleolus organizing regions staining in plants. Stain Technol 55:87–90PubMedGoogle Scholar
  34. Howell EC, Barker GC, Jones GH, Kearsey MJ, King GJ, Kop EP, Ryder CD, Teakle GR, Vicente JG, Armstrong SJ (2002) Integration of the cytogenetic and genetic linkage maps of Brassica oleracea. Genetics 161:1225–1234PubMedGoogle Scholar
  35. Jackson SA, Cheng Z, Wang ML, Goodman HM, Jiang J (2000) Comparative fluorescence in situ hybridization mapping of a 431-kb Arabidopsis thaliana bacterial artificial chromosome contig reveals the role of chromosomal duplications in the expansion of the Brassica rapa genome. Genetics 156:833–838PubMedGoogle Scholar
  36. Ji Y, Chetelat RT (2003) Homoeologous pairing and recombination in Solanum lycopersicoides monosomic addition and substitution lines of tomato. Theor Appl Genet 106:979–989PubMedGoogle Scholar
  37. Jørgensen RB, Chen BY, Cheng BF, Heneen WK, Simonsen V (1996) Random amplified polymorphic DNA markers of the Brassica alboglabra chromosomes of a B. capestris-alboglabra addition line. Chromosome Res 4:111–114PubMedGoogle Scholar
  38. Khoudoleeva OA, Lazareva EM, Kononenko NV, Chentsov YS, Polyakov VY (2000) Dynamics of structural and functional association of nucleolar chromosomes in cells of the hexaploid wheat Triticum aestivum L. at different stages of the cell cycle and during genome polyploidization. Membr Cell Biol 14:19–36PubMedGoogle Scholar
  39. Koo D-H, Plaha P, Lim YP, Hur Y, Bang J-W (2004) A high-resolution karyotype of Brassica rapa ssp. pekinensis revealed by pachytene analysis and multicolour fluorescence in situ hybridisation. Theor Appl Genet 109:1346–1352CrossRefPubMedGoogle Scholar
  40. Kulak S, Hasterok R, Maluszynska J (2002) Karyotyping of Brassica amphidiploids using 5S and 25S rDNA as chromosome markers. Hereditas 136:144–150, erratum in Hereditas 137:79–80CrossRefPubMedGoogle Scholar
  41. Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228PubMedGoogle Scholar
  42. Lan TH, Delmonte TA, Reischmann KP, Hyman J, Kowalski SP, McFerson J, Kresovich S, Paterson AH (2000) An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. Genome Res 10:776–788CrossRefPubMedGoogle Scholar
  43. Leitch IJ, Heslop-Harrison JS (1993) Physical mapping for four sites of 5S rDNA sequences and one side of the alpha-amylase gene in barley (Hordeum vulgare). Genome 36:517–523Google Scholar
  44. Lopez-Leon MD, Cabrero J, Camacho JPM (1995) Changes in DNA methylation during development in the B chromosome NOR of the grasshopper Eyprepocnemis plorans. Heredity 74:296–302Google Scholar
  45. Lukens L, Zou F, Lydiate D, Parkin I, Osborn T (2003) Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics 164:359–372PubMedGoogle Scholar
  46. Maluszynska J (2002) In situ hybridization in plants—methods and applications. In: Jain SM, Brar DS, Ahloowalia BS (eds) Molecular techniques in crop improvement. Kluwer, Dordrecht, pp 299–326Google Scholar
  47. Maluszynska J, Hasterok R (2005) Identification of individual chromosomes and parental genomes in Brassica juncea using GISH and FISH. Cytogenet Genome Res 109 (in press)Google Scholar
  48. Maluszynska J, Heslop-Harrison JS (1993) Physical mapping of rDNA loci in Brassica species. Genome 36:774–781Google Scholar
  49. Moscone EA, Klein F, Lambrou M, Fuchs J, Schweizer D (1999) Quantitative karyotyping and dual-color FISH mapping of 5S and 18S-25S rDNA probes in the cultivated Phaseolus species (Leguminosae). Genome 42:1224–1233CrossRefPubMedGoogle Scholar
  50. Nozaki T, Mishiba K, Mii M, Koba T (2000) Construction of synteny groups of Brassica alboglabra by RAPD markers and detection of chromosome aberrations and distorted transmission under the genetic background of B. campestris. Theor Appl Genet 101:538–546CrossRefGoogle Scholar
  51. Olin-Fatih M, Heneen WK (1992) C-banded karyotypes of Brassica campestris, B. oleracea, and B. napus. Genome 35:583–589Google Scholar
  52. Osborn TC, Butrulle DV, Sharpe AG, Pickering KJ, Parkin IAP, Parker JS, Lydiate DJ (2003) Detection and effects of a homeologous reciprocal transposition in Brassica napus. Genetics 165:1569–1577PubMedGoogle Scholar
  53. Parkin IA, Lydiate DJ, Trick M (2002) Assessing the level of collinearity between Arabidopsis thaliana and Brassica napus for A. thaliana chromosome 5. Genome 45:356–366CrossRefPubMedGoogle Scholar
  54. Pikaard CS (1999) Nucleolar dominance and silencing of transcription. Trends Plant Sci 4:478–483CrossRefPubMedGoogle Scholar
  55. Pikaard CS (2000a) The epigenetics of nucleolar dominance. Trends Genet 16:495–500CrossRefGoogle Scholar
  56. Pikaard CS (2000b) Nucleolar dominance: uniparental gene silencing on a multi-megabase scale in genetic hybrids. Plant Mol Biol 43:163–177CrossRefGoogle Scholar
  57. Prakash S, Hinata K (1980) Taxonomy, cytogenetics and origin of crop Brassicas, a review. Opera Bot 55:1:57Google Scholar
  58. Qi LL, Wang SL, Chen PD, Liu DJ, Friebe B, Gill BS (1997) Molecular cytogenetic analysis of Leymus racemosus chromosomes added to wheat. Theor Appl Genet 95:1084–1091CrossRefGoogle Scholar
  59. Sato S, Matsumoto E, Kuroki Y (1981) Satellite association of the nucleolar chromosomes in a plant. Protoplasma 108:139–147CrossRefGoogle Scholar
  60. Schelfhout CJ, Snowdon R, Cowling WA, Wroth JM (2004) A PCR based B-genome-specific marker in Brassica species. Theor Appl Genet 109:917–921CrossRefPubMedGoogle Scholar
  61. Serizawa N, Nasuda S, Endo TR (2001) Barley chromosome addition lines of wheat for screening of AFLP markers on barley chromosomes. Genes Genet Syst 76:107–110CrossRefPubMedGoogle Scholar
  62. Shishido R, Sano Y, Fukui K (2000) Ribosomal DNAs: an exception to the conservation of gene order in rice genomes. Mol Gen Genet 263:586–591CrossRefPubMedGoogle Scholar
  63. Snowdon RJ, Köhler W, Friedt W, Köhler A (1997a) Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids. Theor Appl Genet 95:1320–1324CrossRefGoogle Scholar
  64. Snowdon RJ, Köhler W, Köhler A (1997b) Chromosomal localization and characterization of rDNA loci in the Brassica A and C genomes. Genome 40:582–587Google Scholar
  65. Snowdon RJ, Friedt W, Köhler A, Köhler W (2000) Molecular cytogenetic localization and characterization of 5S and 25S rDNA loci for chromosome identification in oilseed rape (Brassica napus L.). Ann Bot 86:201–204CrossRefGoogle Scholar
  66. Snowdon RJ, Friedrich T, Friedt W, Kohler W (2002) Identifying the chromosomes of the A- and C-genome diploid Brassica species B. rapa (syn. campestris) and B. oleracea in their amphidiploid B. napus. Theor Appl Genet 104:533–538CrossRefPubMedGoogle Scholar
  67. Stitou S, Diaz De La Guardia R, Jimenez R, Burgos M (2000) Inactive ribosomal cistrons are spread throughout the B chromosomes of Rattus rattus (Rodentia, Muridae). Implications for their origin and evolution. Chromosome Res 8:305–311CrossRefPubMedGoogle Scholar
  68. U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452Google Scholar
  69. Unfried I, Gruendler P (1990) Nucleotide sequence of the 5.8S and 25S rRNA genes and of the internal transcribed spacers from Arabidopsis thaliana. Nucleic Acids Res 18:4011PubMedGoogle Scholar
  70. Wang LX, Zhao JW, Xu FS, Liu RH, Meng JL (2002) Integration of DNA clones related to important economic traits of Brassica napus onto Arabidopsis genetic map. Yi Chuan Xue Bao 29:741–746PubMedGoogle Scholar
  71. Ziolkowski PA, Sadowski J (2002) FISH-mapping of rDNAs and Arabidopsis BACs on pachytene complements of selected Brassicas. Genome 45:189–197CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Robert Hasterok
    • 1
    Email author
  • Elzbieta Wolny
    • 1
  • Sylwia Kulak
    • 1
  • Aleksandra Zdziechiewicz
    • 1
  • Jolanta Maluszynska
    • 1
  • Waheeb K. Heneen
    • 2
  1. 1.Department of Plant Anatomy and CytologyUniversity of SilesiaKatowicePoland
  2. 2.Department of Crop ScienceSwedish University of Agricultural SciencesAlnarpSweden

Personalised recommendations