Molecular mapping of a quantitative trait locus for aluminum tolerance in wheat cultivar Atlas 66

  • H.-X. Ma
  • G.-H. BaiEmail author
  • B. F. Carver
  • L.-L. Zhou
Original Paper


Genetic improvement of aluminum (Al) tolerance is one of the cost-effective solutions to improve wheat (Triticum aestivum) productivity in acidic soils. The objectives of the present study were to identify quantitative trait loci (QTL) for Al-tolerance and associated PCR-based markers for marker-assisted breeding utilizing cultivar Atlas 66. A population of recombinant inbred lines (RILs) from the cross Atlas 66/Century was screened for Al-tolerance by measuring root-growth rate during Al treatment in hydroponics and root response to hematoxylin stain of Al treatment. After 797 pairs of SSR primers were screened for polymorphisms between the parents, 131 pairs were selected for bulk segregant analysis (BSA). A QTL analysis based on SSR markers revealed one QTL on the distal region of chromosome arm 4DL where a malate transporter gene was mapped. This major QTL accounted for nearly 50% of the phenotypic variation for Al-tolerance. The SSR markers Xgdm125 and Xwmc331 were the flanking markers for the QTL and have the potential to be used for high-throughput, marker-assisted selection in wheat-breeding programs.


Triticum aestivum Aluminum tolerance SSR marker QTL mapping 



This paper reports the results of research only. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. This is contribution No. 05-78-J of the Kansas Agricultural Experiment Station, Manhattan, KS, USA.


  1. Aniol A (1990) Genetics of tolerance to aluminum in wheat (Triticum aestivum L. Thell). Plant Soil 123:223–227CrossRefGoogle Scholar
  2. Aniol A, Gustafson JP (1984) Chromosome location of genes controlling aluminum tolerance in wheat, rye, and triticale. Can J Genet Cytol 26:701–705CrossRefGoogle Scholar
  3. Baier AC, Somers DJ, Gustafson JP (1995) Aluminum tolerance in wheat: Correlating hydoponic evaluation with field and soil performances. Plant Breed 114:292–296CrossRefGoogle Scholar
  4. Basu U, McDonald JL, Archamhault DJ, Good AG, Briggs KG, Aung T, Taylor GJ (1997) Genetic and physiological analysis of doubled-haploid, aluminum-resistant lines of wheat provide evidence for the involvement of a 23 kDa, root exudate polypeptide in mediating resistance. Plant Soil 196:283–288CrossRefGoogle Scholar
  5. Berzonsky WA (1992) The genomic inheritance of aluminum tolerance in ‘Atlas 66’ wheat. Genome 35:689–693CrossRefGoogle Scholar
  6. Camargo CEO (1981) Melhoramento do trigo. I: Heriditariedade de tolerancia a toxicidade do aluminio. Bragantia 40:33–45CrossRefGoogle Scholar
  7. Camargo CEO (1984) Melhoramento do trigo. VI: Heriditariedade de tolerancia a tres concentracoes de aluminio em solucao nutritive. Bragantia 40:279–291CrossRefGoogle Scholar
  8. Carver BF, Ownby JD (1995) Acid soil tolerance in wheat. Adv Agron 54:117–173CrossRefGoogle Scholar
  9. Carver BF, Whitmore WE, Smith EL, Bona L (1993) Registration of four aluminum-tolerant winter wheat germplasms and two susceptible near-isolines. Crop Sci 33:1113–1114CrossRefGoogle Scholar
  10. Foy CD, Armiger WH, Briggle LW, Reid DA (1965) Differential aluminum tolerance of wheat and barley varieties in acid soils. Agron J 66:751–758CrossRefGoogle Scholar
  11. Gupta PK, Balyan HS, Edwards, KJ, Isaac P, Korzun V, Roder M, Gautier MF, Joudrier P, Schlatter AR, Dubcovsky J, Pena RC, Khairallah M, Penner G, Hayden MJ, Sharp P, Keller B, Wang RCC, Hardouin JP, Jack P, Leroy P (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422CrossRefPubMedGoogle Scholar
  12. Guyomarc’h H, Sourdille P, Edwards KJ, Bernard M (2002) Studies of the transferability of microsatellite derived from Triticum taushchii to hexaploid wheat and to diploid related species using amplification, hybridization and sequence comparisons. Theor Appl Genet 105:736–744CrossRefPubMedGoogle Scholar
  13. Hoekenga OA, Vision TJ, Shaff JE, Monforte AJ, Lee GP, Howell SH, Kochian LV (2003) Identification and charcterization of aluminum tolerance loci in Arabidopsis (Landsberg erecta × Columbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait. Plant Physiol 132:936–948CrossRefPubMedPubMedCentralGoogle Scholar
  14. Jackson T, Reisenauer H (1984) Crop response to lime in western United States. In: Adams F (ed) Soil acidity and liming. American Society of Agronomy, Crop Science Society of America, Soil society of America, Madison, WI, pp 333–347Google Scholar
  15. Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Ann Rev Plant Physiol Mol Biol 46:237–260CrossRefGoogle Scholar
  16. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  17. Lafever HN, Campbell LG (1978) Inheritance of aluminum tolerance in wheat. Can J Gen Cytol 20:355–364CrossRefGoogle Scholar
  18. Lander ES, Green P, Abrahamson J, Barlow A, Daley MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181CrossRefPubMedGoogle Scholar
  19. Luo MC, Dvorak J (1996) Molecular mapping of an aluminum tolerance locus on chromosome 4D of CS wheat. Euphytica 91:31–35CrossRefGoogle Scholar
  20. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulk segregant analysis. A rapid method to detect markers in specific renomic regions by using sepregating population. Proc Natl Acad Sci USA 88:9828–9832CrossRefPubMedPubMedCentralGoogle Scholar
  21. Nelson JC (1997) QGENE: software for marker-based genomic analysis and breeding. Mol Breed 3:239–245CrossRefGoogle Scholar
  22. Papernik LA, Bethea AS, Singleton TE, Magalhaes JV, Garvin DF, Kochian LV (2001) Mechanistic basis of Al sensitivity in the ditelosomic lines of Chinese Spring wheat. Planta 212:829–834CrossRefPubMedGoogle Scholar
  23. Pestsova E, Ganal MW, Roder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of breed wheat. Genome 43:689–697CrossRefPubMedGoogle Scholar
  24. Polle E, Konzak CF, Kittrick JA (1978) Visual detection of aluminum tolerance levels in wheat by hematoxylin staining of seedling roots. Crop Sci 18:823–827CrossRefGoogle Scholar
  25. Prestes AM, Konzak CF, Hendrix JW (1975) An improved seedling culture method for screening wheat for tolerance to toxic levels of aluminum. In: Agronomy abstracts. ASA, Madison, WI, p 60Google Scholar
  26. Riede CR, Anderson JA (1996) Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Sci 36:905–909CrossRefGoogle Scholar
  27. Roder MS, Korzum V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedPubMedCentralGoogle Scholar
  28. Rodriguez Milla MA, Gustafson JP (2001) Genetic and physical characterization of chromosome 4DL in wheat. Genome 44:883–892CrossRefGoogle Scholar
  29. Saghai-Maroof MA, Soliman K, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018CrossRefPubMedPubMedCentralGoogle Scholar
  30. Samac DA, Tesfaye M (2003) Plant improvement for tolerance to aluminum in acid soil-a review. Plant Cell Tissue Organ Cult 75:189–207CrossRefGoogle Scholar
  31. SAS institute Inc. (1989) SAS/STAT user’s guide, Version 6, 4th edn. Cary, NCGoogle Scholar
  32. Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653CrossRefPubMedGoogle Scholar
  33. Somers DJ, Gustafson JP (1995) The expression of aluminum stress induced polypeptides in a population segregating for aluminum tolerance in wheat (Triticom aestivum L.). Genome 38:1213–1220CrossRefPubMedGoogle Scholar
  34. Somers DJ, Briggs KG, Gustafson JP (1996) Aluminum stress and protein synthesis in near isogenic lines of Triticum aestivum differing in aluminum tolerance. Physiol Plant 97:694–700CrossRefGoogle Scholar
  35. Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560CrossRefPubMedGoogle Scholar
  36. Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G., Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot×Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538PubMedGoogle Scholar
  37. Tang Y, Garvin DF, Kochian LV, Sorrells ME, Carver BF (2002) Physiology genetics of aluminum tolerance in the wheat cultivar Atlas 66. Crop Sci 42:1541–1546CrossRefGoogle Scholar
  38. Von Uexkull HR, Mutert E (1995) Global extent, development and economic impact of acid soils. In: Date RA, Grundon NJ, Rayment GE, Probert ME (eds) Plant–soil interactions at low pH: principles and management. Kluwer Academic Publishers, Dordrecht, pp 5–19CrossRefGoogle Scholar
  39. Wood S, Seastian K, Scherr S (2000) Soil resource condition. In: Pilot analysis of global ecosystems. International Food Policy Research Institute and The World Resources Institute, Washington, DC, pp 45–54Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • H.-X. Ma
    • 1
  • G.-H. Bai
    • 2
    Email author
  • B. F. Carver
    • 3
  • L.-L. Zhou
    • 1
  1. 1.Department of AgronomyKansas State UniversityManhattanUSA
  2. 2.USDA-ARS-Plant Science and Entomology Research UnitKansas State UniversityManhattanUSA
  3. 3.Department of Plant and Soil SciencesOklahoma State UniversityStillwaterUSA

Personalised recommendations