Theoretical and Applied Genetics

, Volume 111, Issue 7, pp 1322–1329

Rationalising germplasm collections: a case study for wheat

  • O. Dobrovolskaya
  • U. Saleh
  • L. Malysheva-Otto
  • M.S. Röder
  • A. Börner
Original Paper

Abstract

In total 70 genebank accessions comprising 50 hexaploid, 12 tetraploid and 8 diploid wheats of the Gatersleben collection were selected based on the screening of the passport data for identical cultivar names or accession numbers of the donor genebanks. Twelve potential duplicate groups consisting of three to nine accessions with identical names/numbers were selected and analysed with DNA markers (microsatellites). A bootstrap approach based on re-sampling of both microsatellite markers and alleles within marker loci was used to test for homogeneity. Although several homogeneous groups were identified it became clear that cultivar name identity alone did not allow the determination of duplicates. A combination of SSR-analysis followed by the bootstrap method and database survey considering the botanical classification and other data (origin, growth habit and donor) available is recommended in order to determine duplicates. A procedure for the identification of duplicates and their further handling in ex situ genebanks is discussed.

Keywords

Duplicates Ex situ genebank collections Microsatellites Wheat Triticum spp. 

References

  1. Alamerew S, Chebotar S, Huang XQ, Röder MS, Börner A (2004) Genetic diversity in Ethiopian hexaploid and tetraploid wheat germplasm assessed by microsatellite markers. Gen Res Crop Evol 51:559–567CrossRefGoogle Scholar
  2. Anonymous (2005) Annual Report 2004, Institut für Pflanzengenetik und Kulturpflanzenforschung, Gatersleben, 192ppGoogle Scholar
  3. Börner A, Chebotar S, Korzun V (2000) Molecular characterization of the genetic integrity of wheat (Triticum aestivum L.) germplasm after long term maintenance. Theor Appl Genet 100:494–497CrossRefGoogle Scholar
  4. Chebotar S, Röder MS, Korzun V, Saal B, Weber WE, Börner A (2003) Molecular studies on genetic integrity of open pollinating species rye (Secale cereale L.) after long term genebank maintenance. Theor Appl Genet 107:1469–1476CrossRefPubMedGoogle Scholar
  5. Donini P, Stephenson P, Bryan GJ, Koebner RMD (1998) The potential of microsatellites for high throughput genetic diversity assessment in wheat and barley. Gen Res Crop Evol 45:415–421CrossRefGoogle Scholar
  6. Donini P, Law JR, Koebner RMD, Reeves JC, Cooke RJ (2000) Temporal trends in the diversity of UK wheat. Theor Appl Genet 100:912–917CrossRefGoogle Scholar
  7. FAO (1998) The state of the world’s plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome, 510 ppGoogle Scholar
  8. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  9. Hammer K, Knüpffer H, Filatenko A, Zuev E (1998) Diploid wheats in the Gatersleben genebank. In: Jaradat AA (ed) Triticeae III. Science publishers Inc., NY, pp 37–44Google Scholar
  10. Hammer K, Filatenko AA, Korzun V (2000) Microsatellite markers—a new tool for distiguishing diploid wheat. Gen Res Crop Evol 47:497–505CrossRefGoogle Scholar
  11. Hintum TJL, Knüpffer H (1995) Duplication within and between germplasm collection. I. Identifying duplication on the basis of passport data. Gen Res Crop Evol 42:1127–1133Google Scholar
  12. Hintum TJL, Visser DL (1995) Duplication within and between germplasm collection. II. Duplication in four European barley collections. Gen Res Crop Evol 42:135–145CrossRefGoogle Scholar
  13. Huang XQ, Börner A, Röder MS, Ganal MW (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet 105:699–707PubMedCrossRefGoogle Scholar
  14. Khlestkina EK, Röder MS, Efremova TT, Börner A, Shumny VK (2004a) The genetic diversity of old and modern Siberian varieties of common spring wheat determined by microsatellite markers. Plant Breed 123:122–127CrossRefGoogle Scholar
  15. Khlestkina EK, Huang XQ, Quenum FJB, Chebotar S, Röder MS, Börner A (2004b) Genetic diversity in cultivated plants—loss or stability? Theor Appl Genet 108:1466–1472CrossRefPubMedGoogle Scholar
  16. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163CrossRefPubMedGoogle Scholar
  17. Lund B, Ortiz R, Skovgaard IM, Waugh R, Andersen SB (2003) Analysis of potential duplicates in barley gene bank collections using re-sampling of microsatellite data. Theor Appl Genet 106:1129–1138PubMedGoogle Scholar
  18. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323PubMedCrossRefGoogle Scholar
  19. Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007CrossRefGoogle Scholar
  20. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedGoogle Scholar
  21. Ruiz M, Aguiriano E (2004) Analysis of duplication in the Spanish durum wheat collection maintained in the CRF-INIA on the basis of agro-morphological traits and gliadin proteins. Gen Res Crop Evol 51:231–235CrossRefGoogle Scholar
  22. Sahu RK (1989) Screening for duplicates in the germplasm collection. Int Rice Res Newsl 14:4Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • O. Dobrovolskaya
    • 1
    • 2
  • U. Saleh
    • 1
    • 3
  • L. Malysheva-Otto
    • 1
  • M.S. Röder
    • 1
  • A. Börner
    • 1
  1. 1.Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK)GaterslebenGermany
  2. 2.Siberian Branch of the Russian Academy of SciencesInstitute of Cytology and GeneticsNovosibirskRussia
  3. 3.Regional Agricultural Research StationRahmatpurBangladesh

Personalised recommendations