Theoretical and Applied Genetics

, Volume 111, Issue 5, pp 956–964 | Cite as

Analysis of expressed sequence tags and the identification of associated short tandem repeats in switchgrass

  • Christian M. Tobias
  • Paul Twigg
  • Daniel M. Hayden
  • Kenneth P. Vogel
  • Rob M. Mitchell
  • Gerard R. Lazo
  • Elaine K. Chow
  • Gautam Sarath
Original Paper

Abstract

Switchgrass is a large, North American, perennial grass that is being evaluated as a potential energy crop. Expressed sequence tags (ESTs) were generated from four switchgrass cv. “Kanlow” cDNA libraries to create a gene inventory of 7,810 unique gene clusters from a total of 11,990 individual sequences. Blast similarity searches to SwissProt and GenBank non-redundant protein and nucleotide databases were performed and a total of 79% of these unique clusters were found to be similar to existing protein or nucleotide sequences. Tentative functional classification of 61% of the sequences was possible by association with appropriate gene ontology descriptors. Significant differential representation between genes in leaf, stem, crown, and callus libraries was observed for many highly expressed genes The unique gene clusters were screened for the presence of short tandem repeats for further development as microsatellite markers. A total of 334 gene clusters contained repeats representing 3.8% of the ESTs queried.

Notes

Acknowledgments

Supported by the United States Department of Agriculture, Agricultural Research Service CRIS 5325-21000-013-00, NP307 Biofuel and Bioenergy Alternatives. This work was also supported in part by NIH Grant P20 RR16569 from the BRIN Program of the National Center for Research Resources, and by a University of Nebraska at Kearney Research Services Council grant.

References

  1. Adams M, Kelley J, Gocayne J, Dubnick M, Polymeropoulos M, Xiao H, Merril C, Wu A, Olde B, Moreno R et al (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252:1651–1656PubMedCrossRefGoogle Scholar
  2. Altschul SF, Gish W, W M, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  3. Anterola AM, Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochem 61:221–294CrossRefGoogle Scholar
  4. Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O’Donovan C, Redaschi N, Yeh LS (2004) UniProt: the universal protein knowledge base. Nucleic Acids Res 32:D115–D119CrossRefPubMedGoogle Scholar
  5. Barnett FL, Carver RF (1967) Meiosis and pollen stainability in switchgrass, Panicum virgatum L. Crop Sci 7:301–304CrossRefGoogle Scholar
  6. Barrett B, Griffiths A, Schreiber M, Ellison N, Mercer C, Bouton J, Ong B, Forster J, Sawbridge T, Spangenberg G, Bryan G, Woodfield D (2004) A microsatellite map of white clover. Theor Appl Genet 109:596–608PubMedGoogle Scholar
  7. Bennetzen J, Ma J (2003) The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis. Curr Opin Plant Biol 6:128–133PubMedCrossRefGoogle Scholar
  8. Carpita NC (1996) Structure and biogenesis of the cell walls of grasses. Ann Rev of Plant Physiol Plant Mol Biol 47:445–476CrossRefGoogle Scholar
  9. Chakraborty R, Kimmel M, Strivers D, Davison L, Deka R (1997) Relative mutation rates at di- tri- and tetranucleotide microsatellite loci. Proc Natl Acad Sci USA 94:1041–1046CrossRefPubMedGoogle Scholar
  10. Chin E, Senior M, Shu H, JSC S (1996) Maize simple repetitive DNA sequences: abundance and allele variation. Genome 39:866–873PubMedGoogle Scholar
  11. Cho Y, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch S, Park W, Ayres N, Cartinhour S (2000) Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor Appl Genet 100:713–722CrossRefGoogle Scholar
  12. Devos K, Gale M (2000) Genome relationships: the grass model in current research. Plant Cell 12:637–646CrossRefPubMedGoogle Scholar
  13. Ewing B, Green P (1998) Basecalling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194PubMedGoogle Scholar
  14. Ewing B, Hillier L, Wendl M, Green P (1998) Basecalling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185PubMedGoogle Scholar
  15. Gunter LE, Tuskan GA, Wullschleger SD (1996) Diversity among populations of switchgrass based on RAPD markers. Crop Sci 36:1017–1022CrossRefGoogle Scholar
  16. Hultquist S, Vogel KP, Lee D, Arumuganathan K, Kaeppler S (1996) Chloroplast DNA and nuclear DNA content variations among cultivars of switchgrass, Panicum virgatum L. Crop Sci 36:1049–1052CrossRefGoogle Scholar
  17. Jurka J, Pethiyagoda C (1995) Simple repetitive DNA sequences from primates: compilation and analysis. J Mol Evol 40:120–126CrossRefPubMedGoogle Scholar
  18. Kantety R, La Rota M, Matthews D, Sorrells M (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48:501–510CrossRefPubMedGoogle Scholar
  19. Kellogg E (2001) Evolutionary history of the grasses. Plant Physiol 125:1198–1205CrossRefPubMedGoogle Scholar
  20. Lazo GR et al (2004) Development of an expressed sequence tag (EST) resource for wheat (Triticum aestivum L.): EST generation, unigene analysis, probe selection and bioinformatics for a 16,000-locus bin-delineated map. Genetics 168:585–593CrossRefPubMedGoogle Scholar
  21. Lerner DR, Raikhel NV (1989) Cloning and characterization of root-specific barley lectin. Plant Physiol 91:124–129PubMedCrossRefGoogle Scholar
  22. McLaughlin SB, Walsh ME (1998) Evaluating environmental consequences of producing herbaceous crops for bioenergy. Biomass Bioenergy 14:317–324CrossRefGoogle Scholar
  23. Moore KJ, Moser LE, Vogel KP, Waller SS, Johnson BE, Pedersen JF (1991) Describing and quantifying growth stages of perennial forage grasses. Agron J 83:1073–1077CrossRefGoogle Scholar
  24. Moser LE, Vogel KP (1995) Switchgrass, big bluestem, and indiangrass. In: Barnes RF, Miller DA, Nelson CJ (eds) An introduction to grassland agriculture, chapter 32. Iowa State University Press, Ames, pp 409–420Google Scholar
  25. Picoult-Newberg L, Ideker T, Pohl M, Taylor S, Donaldson M, Nickerson D, Boyce-Jacino M (1999) Mining SNPs from EST databases. Genome Res 9:167–174PubMedGoogle Scholar
  26. Richards HA, Rudas VA, Sun H, McDaniel JK, Tomaszewski Z, Conger BV (2001) Construction of a GFP-BAR plasmid and its use for switchgrass transformation. Plant Cell Rep 20:48–54CrossRefGoogle Scholar
  27. Saha M, Mian M, Eujayl I, Zwonitzer J, Wang L, May G (2004) Tall fescue EST-SSR markers with transferability across several grass species. Theor Appl Genet 109:783–791PubMedCrossRefGoogle Scholar
  28. Somleva MN, Tomaszewski Z, Conger BV (2002) Agrobacterium-mediated genetic transformation of switchgrass. Crop Sci 42:2080–2087CrossRefGoogle Scholar
  29. Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452CrossRefPubMedGoogle Scholar
  30. Vogel KP, Haskins FA, Gorz HJ, Anderson BA, Ward JK (1991) Registration of “Trailblazer” switchgrass. Crop Sci 31:1388CrossRefGoogle Scholar
  31. Vogel KP, Hopkins AA, Moore KJ, Johnson KD, Carlson IT (1996) Registration of “Shawnee” switchgrass. Crop Sci 36:1713CrossRefGoogle Scholar
  32. Weber J (1990) Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. Genomics 7:524–530CrossRefPubMedGoogle Scholar
  33. Wu X-L, Griffin K, Garcia M, Michal J, Xiao Q, Wright R, Jiang Z (2004) Census of orthologous genes and self-organizing maps of biologically relevant transcriptional patterns in chickens (Gallus gallus). Gene 340:213–225CrossRefPubMedGoogle Scholar
  34. Yu J, La Rota M, Kantety R, Sorrells M (2004) EST derived SSR markers for comparative mapping in wheat and rice. Mol Genet Genomics 271:742–751CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Christian M. Tobias
    • 1
  • Paul Twigg
    • 2
  • Daniel M. Hayden
    • 1
  • Kenneth P. Vogel
    • 3
  • Rob M. Mitchell
    • 3
  • Gerard R. Lazo
    • 1
  • Elaine K. Chow
    • 1
  • Gautam Sarath
    • 3
  1. 1.USDA, ARS, Western Regional Research CenterGenomics and Gene Discovery UnitAlbanyUSA
  2. 2.Biology Department, Bruner Hall of ScienceUniversity of Nebraska at KearneyKearneyUSA
  3. 3.USDA, ARS, Wheat, Sorghum and Forage Research Unit, Keim HallE.C. University of NebraskaLincolnUSA

Personalised recommendations