Theoretical and Applied Genetics

, Volume 111, Issue 6, pp 1032–1041 | Cite as

Construction and characterization of a Coffea canephora BAC library to study the organization of sucrose biosynthesis genes

  • T. Leroy
  • P. Marraccini
  • M. Dufour
  • C. Montagnon
  • P. Lashermes
  • X. Sabau
  • L. P. Ferreira
  • I. Jourdan
  • D. Pot
  • A. C. Andrade
  • J. C. Glaszmann
  • L. G. E. Vieira
  • P. Piffanelli
Original Paper

Abstract

The first bacterial artificial chromosome (BAC) library of Robusta coffee (Coffea canephora) was constructed, with the aim of developing molecular resources to study the genome structure and evolution of this perennial crop. Clone 126, which is highly productive and confers good technological and organoleptic qualities of beverage, was chosen for development of this library. The BAC library contains 55,296 clones, with an average insert size of 135 Kb per plasmid, therefore representing theoretically nine haploid genome equivalents of C. canephora. Its validation was achieved with a set of 13 genetically anchored single-copy and 4 duplicated RFLP probes and yielded on average 9 BAC clones per probe. Screening of this BAC library was also carried out with partial cDNA probes coding for enzymes of sugar metabolism like invertases and sucrose synthase, with the aim of characterizing the organization and promoter structure of this important class of genes. It was shown that genes for both cell wall and vacuolar forms of invertases were probably unique in the Robusta genome whereas sucrose synthase was encoded by at least two genes. One of them (CcSUS1) was cloned and sequenced, showing that our BAC library is a valuable tool to rapidly identify genes of agronomic interest or linked to cup quality in C. canephora.

References

  1. Akaffou DS, Ky CL, Barre P, Hamon S, Louarn J, Noirot M (2003) Identification and mapping of a major gene (Ft1) involved in fructification time in the interspecific cross Coffea pseudozanguebariae × C liberica var Dewevrei: impact on caffeine content and seed weight. Theor Appl Genet 106:1486–1490Google Scholar
  2. Baud S, Vaultier MN, Rochat C (2004) Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J Exp Bot 55:397–409CrossRefPubMedGoogle Scholar
  3. Clément D, Lanaud C, Sabau X, Fouet O, Le Cunff L, Ruiz E, Risterucci AM, Glaszmann JC, Piffanelli P (2004) Creation of BAC genomic resources for cocoa (Theobroma cacao L.) for physical mapping of RGA containing BAC clones. Theor Appl Genet 108:1627–1634CrossRefPubMedGoogle Scholar
  4. Clifford MN (1985) Chemical and physical aspects of green coffee and coffee products. In: Clifford MN, Wilson KC (eds) Coffee, Botany, Biochemistry and Production of Beans and Beverage. Publishing Company Inc., Westport, pp 305–374Google Scholar
  5. Combes MC, Andrzejewski S, Anthony F, Bertrand B, Rovelli P, Grasiozi G, Lashermes P (2000) Characterization of microsatellite loci in Coffea arabica and related coffee species. Mol Ecol 9:1171–1193CrossRefPubMedGoogle Scholar
  6. Cros J, Combes MC, Chabrillange N, Duperray C, Monnot des Angles A, Hamon S (1995) Nuclear DNA content in the subgenus Coffea (Rubiaceae): inter- and intra-specific variation in African species. Can J Bot 73:14–20Google Scholar
  7. De Maria CAB, Trugo LC, Moreira RFA, Werneck CC (1994) Composition of green coffee fractions and their contribution to the volatile profile formed during roasting. Food Chem 50:141–145CrossRefGoogle Scholar
  8. Dufour M, Hamon P, Noirot M, Risterucci AM, Brottier P, Vico V, Leroy T (2001) Potential use of SSR markers for Coffea spp. genetic mapping. In: Proceedings of the 19th international colloquium on coffee science ASIC. CD-ROM, ASIC, Paris (France)Google Scholar
  9. Fu H, Park WD (1995) Sink- and vascular-associated sucrose synthase functions are encoded by different gene classes in potato. Plant Cell 7:1369–1385CrossRefPubMedGoogle Scholar
  10. Geromel C, Ferreira LP, Cavalari AA, Pereira LFP, Vieira LGE, Leroy T, Mazzafera P, Marraccini P (2004) Sugar metabolism during coffee fruit development. In: Proceedings of the 20th international colloquium on coffee science ASIC. CD-ROM, ASIC, Paris (France)Google Scholar
  11. Guyot B, Petnga E, Vincent JC (1988) Analyse qualitative d’un café Coffea canephora var Robusta en fonction de la maturité Partie I Evolution des caractéristiques physiques, chimiques et organoleptiques. Café Cacao Thé 32:127–130Google Scholar
  12. Komatsu A, Moriguchi T, Koyama K, Omura M, Akihama T (2002) Analysis of sucrose synthase genes in citrus suggests different roles and phylogenic relationships. J Exp Bot 53:61–71CrossRefPubMedGoogle Scholar
  13. Ky CL, Barre P, Lorieux M, Trouslot P, Akaffou S, Louarn J, Charrier A, Hamon S, Noirot M (2000) Interspecific genetic linkage map, segregation distortion and genetic conversion in coffee (Coffea sp.). Theor Appl Genet 101:669–676Google Scholar
  14. Lashermes P, Combes MC, Robert J, Trouslot P, D’Hont A, Anthony F, Charrier A (1999) Molecular characterisation and origin of the Coffea arabica L. genome. Mol Gen Genet 261:259–266CrossRefPubMedGoogle Scholar
  15. Lashermes P, Combes MC, Prakash NS, Trouslot P, Lorieux M, Charrier A (2001) Genetic linkage map of Coffea canephora: effect of segregation distortion and analysis of recombination rate in male and female meioses. Genome 44:589–596CrossRefPubMedGoogle Scholar
  16. Leroy T, Henry AM, Royer M, Altosaar I, Frutos R, Duris D, Philippe R (2000) Genetically modified coffee plants expressing the Bacillus thuringiensiscry1Ac gene for resistance to leaf miner. Plant Cell Rep 19:382–389CrossRefGoogle Scholar
  17. Marraccini P, Pereira LFP, Ferreira LP, Vieira LGE, Cavalari AA, Geromel C, Mazzafera P (2003) Biochemical and molecular characterization of enzyme controlling sugar metabolism during coffee bean development. In: Proceedings of the 7th international symposium of plant molecular biology ISPMB. Poster S19–14, Barcelona (Spain)Google Scholar
  18. Masojc P (2002) The application of molecular markers in the process of selection. Cell Mol Biol Lett 7:499–509PubMedGoogle Scholar
  19. Montagnon C (2000) Optimisation des gains génétiques dans le schéma de sélection récurrente réciproque de Coffea canephora Pierre. Ph. D Thesis, ENSA Montpellier (France)Google Scholar
  20. Montagnon C, Guyot B, Cilas C, Leroy T (1998) Genetic parameters of several biochemical compounds from green coffee, Coffea canephora. Plant Breed 117:576–578Google Scholar
  21. Moschetto D, Montagnon C, Guyot B, Perriot JJ, Leroy T, Eskes AB (1996) Studies on the effect of genotype on cup quality of Coffea canephora. Trop Sci 36:18–31Google Scholar
  22. Noir S, Anthony F, Bertrand B, Combes MC, Lashermes P (2003) Identification of a major gene (Mex-1) from Coffea canephora conferring resistance to Meloidogyne exigua in Coffea arabica. Plant Pathol 52:97–103CrossRefGoogle Scholar
  23. Noir S, Patheyron S, Combes MC, Lashermes P, Chalhoub B (2004) Construction and characterization of a BAC library for genome analysis of the allotetraploid coffee species (Coffea arabica L). Theor Appl Genet 109:225–230Google Scholar
  24. Paillard M, Lashermes P, Pétiard V (1996) Construction of a molecular linkage map in coffee. Theor Appl Genet 93:41–47Google Scholar
  25. Pearl HM, Nagai C, Moore PH, Steiger DL, Osgood RV, Ming R (2004) Construction of a genetic map for arabica coffee. Theor Appl Genet 108:829–835Google Scholar
  26. Roitsch T, Ehneß R (2000) Regulation of source/sink relations by cytokinins. Plant Growth Reg 32:359–367CrossRefGoogle Scholar
  27. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York,Google Scholar
  28. Sera T (2001) Coffee genetic breeding at IAPAR. Crop Breed Appl Biotechnol 1:179–199Google Scholar
  29. Strong SJ, Ohta Y, Litman GW, Amemiya CT (1997) Marked improvement of PAC and BAC cloning is achieved using electroelution of pulsed-field gel-separated partial digests of genomic DNA. Nucleic Acids Res 25:3959–3961CrossRefPubMedGoogle Scholar
  30. Winter H, Huber SC (2000) Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit Rev Plant Sci 19:31–67Google Scholar
  31. Wormer TM (1964) The growth of the coffee berry. Ann Bot 28:47–55Google Scholar
  32. Zhang H-B, Zhao X, Ding X, Paterson AH, Wing RA (1995) Preparation of megabase-size DNA from plant nuclei. Plant J 7:175–184CrossRefGoogle Scholar
  33. Zrenner R, Salanoubat M, Willmitzer L, Sonnewald U (1995) Evidence of a crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L). Plant J 7:97–107CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • T. Leroy
    • 1
  • P. Marraccini
    • 1
    • 2
  • M. Dufour
    • 1
  • C. Montagnon
    • 1
  • P. Lashermes
    • 3
  • X. Sabau
    • 1
  • L. P. Ferreira
    • 2
  • I. Jourdan
    • 1
  • D. Pot
    • 1
  • A. C. Andrade
    • 4
  • J. C. Glaszmann
    • 1
  • L. G. E. Vieira
    • 2
  • P. Piffanelli
    • 1
  1. 1.Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD)Montpellier Cedex 5France
  2. 2.Instituto Agronômico do Paraná (IAPAR), LBI-AMGLondrina (PR)Brazil
  3. 3.Institut de Recherche pour le Développement (IRD)Montpellier Cedex 5France
  4. 4.Parque Estação BiológicaEmpresa Brasileira de Pesquisa Agropecuária (EMBRAPA) -CenargenBrasilia (DF)Brazil

Personalised recommendations