Theoretical and Applied Genetics

, Volume 110, Issue 5, pp 865–880 | Cite as

A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments

  • S. A. Quarrie
  • A. Steed
  • C. Calestani
  • A. Semikhodskii
  • C. Lebreton
  • C. Chinoy
  • N. Steele
  • D. Pljevljakusić
  • E. Waterman
  • J. Weyen
  • J. Schondelmaier
  • D. Z. Habash
  • P. Farmer
  • L. Saker
  • D. T. Clarkson
  • A. Abugalieva
  • M. Yessimbekova
  • Y. Turuspekov
  • S. Abugalieva
  • R. Tuberosa
  • M-C. Sanguineti
  • P. A. Hollington
  • R. Aragués
  • A. Royo
  • D. Dodig
Original Paper

Abstract

A population of 96 doubled haploid lines (DHLs) was prepared from F1 plants of the hexaploid wheat cross Chinese Spring × SQ1 (a high abscisic acid-expressing breeding line) and was mapped with 567 RFLP, AFLP, SSR, morphological and biochemical markers covering all 21 chromosomes, with a total map length of 3,522 cM. Although the map lengths for each genome were very similar, the D  genome had only half the markers of the other two genomes. The map was used to identify quantitative trait loci (QTLs) for yield and yield components from a combination of 24 site × treatment × year combinations, including nutrient stress, drought stress and salt stress treatments. Although yield QTLs were widely distributed around the genome, 17 clusters of yield QTLs from five or more trials were identified: two on group 1 chromosomes, one each on group 2 and group 3, five on group 4, four on group 5, one on group 6 and three on group 7. The strongest yield QTL effects were on chromosomes 7AL and 7BL, due mainly to variation in grain numbers per ear. Three of the yield QTL clusters were largely site-specific, while four clusters were largely associated with one or other of the stress treatments. Three of the yield QTL clusters were coincident with the dwarfing gene Rht-B1 on 4BS and with the vernalisation genes Vrn-A1 on 5AL and Vrn-D1 on 5DL. Yields of each DHL were calculated for trial mean yields of 6 g plant−1 and 2 g plant−1 (equivalent to about 8 t ha−1 and 2.5 t ha−1, respectively), representing optimum and moderately stressed conditions. Analyses of these yield estimates using interval mapping confirmed the group-7 effects on yield and, at 2 g plant−1, identified two additional major yield QTLs on chromosomes 1D and 5A. Many of the yield QTL clusters corresponded with QTLs already reported in wheat and, on the basis of comparative genetics, also in rice. The implications of these results for improving wheat yield stability are discussed.

References

  1. Ammiraju JSS, Dholakia BB, Santra DK, Singh H, Lagu MD, Tamhankar SA, Dhaliwal HS, Rao VS, Gupta VS, Ranjekar PK (2001) Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat. Theor Appl Genet 102:726–732CrossRefGoogle Scholar
  2. Ayala L, Henry M, van Ginkel M, Singh R, Keller B, Khairallah M (2002) Identification of QTLs for BYDV tolerance in bread wheat. Euphytica 128:249–259CrossRefGoogle Scholar
  3. Basten CJ, Zeng Z-B, Weir BS (1996) qtlcartographer: a suite of programs for mapping quantitative trait loci. Abstracts to Plant Genome IV. Academic Press, San Diego, p 108Google Scholar
  4. Bennett MD, Smith JB, Heslop-Harrison JS (1982) Nuclear DNA amounts in angiosperms. Proc R Soc London Ser B 216:179–199CrossRefGoogle Scholar
  5. Blanco A, Bellomo MP, Cenci A, De Giovanni C, D’Ovidio R, Iacono E, Laddomada B, Pagnotta MA, Porceddu E, Sciancalepore A, Simeone R, Tanzarella OA (1998) A genetic linkage map of durum wheat. Theor Appl Genet 97:721–728CrossRefGoogle Scholar
  6. Blanco A, Pasqualone A, Troccoli A, Di Fonzo N, Simeone R (2002) Detection of grain protein content QTLs across environments in tetraploid wheats. Plant Mol Biol 48:615–623Google Scholar
  7. Börner A, Schumann E, Furste A, Coster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936CrossRefPubMedGoogle Scholar
  8. Bryan GJ, Collins AJ, Stephenson P, Orry A, Smith JB, Gale MD (1997) Isolation and characterisation of microsatellites from hexaploid bread wheat. Theor Appl Genet 96:557–563CrossRefGoogle Scholar
  9. Butterworth KJ (2000) Flowering time genes of wheat and their influence on environmental adaptability. PhD thesis, University of East AngliaGoogle Scholar
  10. Byrne PF, Butler JD, Anderson GR, Haley SD (2002) QTL’s for agronomic and morphological traits in a spring wheat population derived from a cross of heat tolerant and heat sensitive lines (poster). In: Plant, Animal and Microbe Genomes X Conf. San Diego, Calif. Google Scholar
  11. Cadalen T, Boeuf C, Bernard S, Bernard M (1997) An intervarietal molecular marker map in Triticum aestivum L. Em. Thell. and comparison with a map from a wide cross. Theor Appl Genet 94:367–377CrossRefGoogle Scholar
  12. Cattivelli L, Baldi P, Crosatti C, Di Fonzo N, Faccioli P, Grossi M, Mastrangelo AM, Pecchioni N, Stanca AM (2002) Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol Biol 48:649–665CrossRefGoogle Scholar
  13. Chalmers KJ, Campbell AW, Kretschmer J, Karakousis A, Henschke PH, Pierens S, Harker N, Pallotta M, Cornish GB, Shariflou MR, Rampling LR, McLauchlan A, Daggard G, Sharp PJ, Holton TA, Sutherland MW, Appels R, Langridge P (2001) Construction of three linkage maps in bread wheat, Triticum aestivum. Aust J Agric Res 52:1089–1119CrossRefGoogle Scholar
  14. Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD, Gale MD (1989) RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet 78:495–504CrossRefPubMedGoogle Scholar
  15. Devos KM, Dubcovsky J, Dvorak J, Chinoy CN, Gale MD (1995) Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor Appl Genet 91:282–288CrossRefPubMedGoogle Scholar
  16. Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 104:399–407CrossRefPubMedGoogle Scholar
  17. Finlay KW, Wilkinson GN (1963) The analysis of adaptation in a plant-breeding programme. Aust J Agric Res 14:342–354CrossRefGoogle Scholar
  18. Forster BP, Miller TE, Law CN (1988) Salt tolerance of two wheat- Agropyron junceum disomic addition lines. Genome 30:559–564Google Scholar
  19. Franckowiak J (1997) Revised linkage maps for morphological markers in barley, Hordeum vulgare. Barley Genet Newsl 26:9–21Google Scholar
  20. Gale MD, Youssefian S (1985) Dwarfing genes in wheat. In: Russell GE (ed) Progress in plant breeding. J Butterworth and Co, London, pp 1–35CrossRefGoogle Scholar
  21. Gale MD, Atkinson MD, Chinoy CN, Harcourt RL, Jia J, Li QY, Devos KM (1995) Genetic maps of hexaploid wheat. In: Li ZS, Xin ZY (eds) Proc 8th Int Wheat Genetics Symp. Agric Scientech Press, Beijing, pp 29–40/Genome 37:871–875Google Scholar
  22. Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106:1032–1040PubMedGoogle Scholar
  23. Hart GE (2001) Molecular-marker maps of the cultivated wheats and other Triticum species. In: Phillips RL, Vasil IK (eds) DNA-based markers in plants. Kluwer, Dordrecht, pp 421–441CrossRefGoogle Scholar
  24. Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99:8133–8138CrossRefPubMedCentralPubMedGoogle Scholar
  25. Isla R, Royo A, Aragues R (1997) Field screening of barley cultivars to soil salinity using a sprinkler and a drip irrigation system. Plant Soil 197:105–117CrossRefGoogle Scholar
  26. Khavkin E, Coe E (1997) Mapped genomic locations for developmental functions and QTLs reflect concerted groups in maize (Zea mays L.). Theor Appl Genet 95:343–352CrossRefGoogle Scholar
  27. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  28. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181CrossRefPubMedGoogle Scholar
  29. Langridge P, Lagudah ES, Holton TA, Appels R, Sharp PJ, Chalmers KJ (2001) Trends in genetic and genome analysis in wheat: a review. Aust J Agric Res 52:1043–1077CrossRefGoogle Scholar
  30. Laurie DA, Reymondie S (1991) High frequencies of fertilization and haploid seedling production in crosses between commercial hexaploid wheat varieties and maize. Plant Breed 106:182–189CrossRefGoogle Scholar
  31. Li WL, Nelson JC, Chu CY, Shi LH, Huang SH, Liu DJ (2002) Chromosomal locations and genetic relationships of tiller and spike characters in wheat. Euphytica 125:357–366CrossRefGoogle Scholar
  32. Li Z-K, Luo LJ, Mei HW, Wang DL, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics 158:1737–1753PubMedCentralPubMedGoogle Scholar
  33. Liu Y-G, Tsunewaki K (1991) Restriction fragment length polymorphism (RFLP) analysis in wheat. II. Linkage maps of the RFLP sites in common wheat. Jpn J Genet 66:617–633CrossRefPubMedGoogle Scholar
  34. Mahmood A, Quarrie SA (1993) Effects of salinity on growth, ionic relations and physiological traits of wheat, disomic addition lines from Thinopyrum bessarabicum and two amphiploids. Plant Breed 110:265–276CrossRefGoogle Scholar
  35. Mano Y, Takeda K (1997) Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica 94:263–272CrossRefGoogle Scholar
  36. Manyowa NM, Miller TE (1991) The genetics of tolerance to high mineral concentrations in the tribe Triticeae—a review and update. Euphytica 57:175–185CrossRefGoogle Scholar
  37. Marino CL, Nelson JC, Lu YH, Sorrells ME, Leroy P, Tuleen NA, Lopes CR, Hart GE (1996) Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell). Genome 39:359–366CrossRefPubMedGoogle Scholar
  38. Messmer MM, Keller M, Zanetti S, Keller B (1999) Genetic linkage map of a wheat × spelt cross. Theor Appl Genet 98:1163–1170CrossRefGoogle Scholar
  39. Murray MG, Thompson WF (1980) The isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325CrossRefPubMedCentralPubMedGoogle Scholar
  40. Nelson JC, Sorrells ME, Van Deynze AE, Lu YH, Atkinson M, Bernard M, Leroy P, Faris JD, Anderson JA (1995a) Molecular mapping of wheat—major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141:721–731PubMedCentralPubMedGoogle Scholar
  41. Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Merlino M, Atkinson M, Leroy P (1995b) Molecular mapping of wheat. Homoeologous group 2. Genome 38:516–524CrossRefPubMedGoogle Scholar
  42. Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Negre S, Bernard M, Leroy P (1995c) Molecular mapping of wheat. Homoeologous group 3. Genome 38:525–533CrossRefPubMedGoogle Scholar
  43. Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr G (2003) An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet 107:1235–1242CrossRefPubMedGoogle Scholar
  44. Pakniyat H, Handley LL, Thomas WTB, Connolly T, Macaulay M, Caligari PDS, B.P. Forster BP (1997) Comparison of shoot dry weight, Na+ content and δ13 C values of ari-e and other semi-dwarf barley mutants under salt-stress. Euphytica 94:7–14CrossRefGoogle Scholar
  45. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AL, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ’Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261CrossRefPubMedGoogle Scholar
  46. Peng J, Korol AB, Fahima T, Röder MS, Ronin YI, Li YC, Nevo E (2000) Molecular genetic maps in wild Emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 10:1509–1531CrossRefPubMedCentralPubMedGoogle Scholar
  47. Quarrie SA (1981) Genetic variability and heritability of drought-induced abscisic acid accumulation in spring wheat. Plant Cell Environ 4:147–151CrossRefGoogle Scholar
  48. Quarrie SA (1987a) Evaluation of the influence of a metabolic character on drought resistance exemplified by studies on abscisic acid in wheat and maize. In: Monti L, Porceddu E (eds) Drought resistance in plants: physiological and genetic aspects. Commission of the European Communities, Luxembourg, pp 111–129Google Scholar
  49. Quarrie SA (1987b) Use of genotypes differing in endogenous abscisic acid levels in studies on physiology and development. In: Hoad GV, Lenton JR, Jackson MB, Atkin RK (eds) Hormone action in plant development: a critical appraisal. Butterworths, London, pp 89–105CrossRefGoogle Scholar
  50. Quarrie SA, Gulli M, Calestani C, Steed A, Marmiroli N (1994) Location of a gene regulating drought-induced abscisic acid production on the long arm of chromosome 5A of wheat. Theor Appl Genet 89:794–800CrossRefPubMedGoogle Scholar
  51. Quarrie SA, Dodig D, Pekic S, Kirby J, Kobiljski B (2003) Prospects for marker-assisted selection of improved drought responses in wheat. Bulg J Plant Physiol Special Issue 2003, pp 83–95Google Scholar
  52. Reynolds MP, Trethowan R, Crossa J, Vargas M, Sayre KD (2002) Physiological factors associated with genotype by environment interaction in wheat. Field Crops Res 75:139–160CrossRefGoogle Scholar
  53. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedCentralPubMedGoogle Scholar
  54. Semikhodskii AG, Quarrie SA, Snape JW (1997) Mapping quantitative trait loci for salinity responses in wheat. In: Jevtic S, Pekic S (eds) Drought and plant production, vol. 2. Proc Int Symp. Agricultural Research Institute Serbia, Belgrade, pp 83–92Google Scholar
  55. Sharp PJ, Kreis M, Shewry PR, Gale MD (1988) Location of B-amylase sequences in wheat and its relatives. Theor Appl Genet 75:286–290CrossRefGoogle Scholar
  56. Singh RP, Huerta-Espino S, Rajaram S, Crossa J (1998) Agronomic effects from chromosome translocations 7DL.7Ag and 1BL.1RS in spring wheat. Crop Sci 38:27–33CrossRefGoogle Scholar
  57. Slafer GA (2003) Genetic basis of yield as viewed from a crop physiologist’s perspective. Ann Appl Biol 142:117–128CrossRefGoogle Scholar
  58. Snape JW, Sarma R, Quarrie SA, Fish L, Galiba G, Sutka J (2001) Mapping genes for flowering time and frost tolerance in cereals using precise genetic stocks. Euphytica 120:309–315CrossRefGoogle Scholar
  59. Sutka J, Snape JW (1989) Location of a gene for frost resistance on chromosome 5A of wheat. Euphytica 42:41–44CrossRefGoogle Scholar
  60. Thomas WTB (2003) Prospects for molecular breeding of barley. Ann Appl Biol 142:1–12CrossRefGoogle Scholar
  61. Van Deynze AE, Dubcovsky J, Gill KS, Nelson JC, Sorrells ME, Dvorak J, Gill BS, Lagudah ES, McCouch SR, Appels R (1995) Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38:45–59CrossRefGoogle Scholar
  62. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414CrossRefPubMedCentralPubMedGoogle Scholar
  63. Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • S. A. Quarrie
    • 1
    • 11
  • A. Steed
    • 1
  • C. Calestani
    • 1
  • A. Semikhodskii
    • 1
  • C. Lebreton
    • 1
  • C. Chinoy
    • 1
  • N. Steele
    • 1
  • D. Pljevljakusić
    • 1
  • E. Waterman
    • 1
  • J. Weyen
    • 2
  • J. Schondelmaier
    • 2
  • D. Z. Habash
    • 3
  • P. Farmer
    • 4
  • L. Saker
    • 4
  • D. T. Clarkson
    • 4
  • A. Abugalieva
    • 5
  • M. Yessimbekova
    • 5
  • Y. Turuspekov
    • 6
  • S. Abugalieva
    • 6
  • R. Tuberosa
    • 7
  • M-C. Sanguineti
    • 7
  • P. A. Hollington
    • 8
  • R. Aragués
    • 9
  • A. Royo
    • 9
  • D. Dodig
    • 1
    • 10
  1. 1.John Innes CentreNorwich Research ParkNorwichUK
  2. 2.SAATEN-UNION Resistenzlabor GmbHLeopoldshöheGermany
  3. 3.CPI DivisionRothamsted ResearchHarpendenUK
  4. 4.IACR-Long Ashton Research StationUniversity of BristolBristolUK
  5. 5.Kazak Institute of AgricultureAlmatyKazakhstan
  6. 6.Institute of Plant Physiology, Genetics and BioengineeringNational Biotechnology CenterAlmatyKazakhstan
  7. 7.Biotechnology Applied to Plant BreedingDepartment of Agroenvironmental Sciences and TechnologyBolognaItaly
  8. 8.Centre for Arid Zone StudiesUniversity of WalesBangorUK
  9. 9.Unidad de Suelos y Riegos, Servicio de Investigación AgroalimentariaGobierno de Aragón (SIA-DGA)ZaragozaSpain
  10. 10.Agricultural Research Institute-SerbiaCentre for Agricultural and Technological Research (CATR)ZaječarSerbia and Montenegro
  11. 11.BelgradeSerbia and Montenegro

Personalised recommendations