Theoretical and Applied Genetics

, Volume 110, Issue 4, pp 754–765 | Cite as

Microsatellite-based high density linkage map in oil palm (Elaeis guineensis Jacq.).

  • N. Billotte
  • N. Marseillac
  • A.-M. Risterucci
  • B. Adon
  • P. Brottier
  • F.-C. Baurens
  • R. Singh
  • A. Herrán
  • H. Asmady
  • C. Billot
  • P. Amblard
  • T. Durand-Gasselin
  • B. Courtois
  • D. Asmono
  • S. C. Cheah
  • W. Rohde
  • E. Ritter
  • A. Charrier
Original Paper

Abstract

A microsatellite-based high-density linkage map for oil palm (Elaeis guinensis Jacq.) was constructed from a cross between two heterozygous parents, a tenera palm from the La Mé population (LM2T) and a dura palm from the Deli population (DA10D). A set of 390 simple sequence repeat (SSR) markers was developed in oil palm from microsatellite-enriched libraries and evaluated for polymorphism along with 21 coconut SSRs. A dense and genome-wide microsatellite framework as well as saturating amplified fragments length polymorphisms (AFLPs) allowed the construction of a linkage map consisting of 255 microsatellites, 688 AFLPs and the locus of the Sh gene, which controls the presence or absence of a shell in the oil palm fruit. An AFLP marker E-Agg/M-CAA132 was mapped at 4.7 cM from the Sh locus. The 944 genetic markers were distributed on 16 linkage groups (LGs) and covered 1,743 cM. Our linkage map is the first in oil palm to have 16 independent linkage groups corresponding to the plant’s 16 homologous chromosome pairs. It is also the only high-density linkage map with as many microsatellite markers in an Arecaceae species and represents an important step towards quantitative trait loci analysis and physical mapping in the E. guineensis species.

References

  1. Artiguenave F, Wincker P, Brottier P, Duprat S, Jovelin F, Scarpelli C, Verdier J, Vico V, Weissenbach J, Saurin W (2000) Genomic exploration of the hemiascomycetous yeasts: 2. Data generation and processing. FEBS Lett 487:13–6CrossRefGoogle Scholar
  2. Beirnaert A, Vanderweyen R (1941) Contribution à l’étude gènétique et biométrique des variétés d’ Elaeis guineensis Jacq. Publ Inst Natl Etude Agron Congo Belg. Ser Sci no. 27Google Scholar
  3. Billotte N, Lagoda PJL, Risterucci AM, Baurens FC (1999) Microsatellite-enriched libraries: applied methodology for the development of SSR markers in tropical crops. Fruits 54:277–288Google Scholar
  4. Billotte N, Frances L, Amblard P, Durand-Gasselin T, Noyer JL, Courtois B (2001a) Search for AFLP and microsatellite molecular markers of the Sh gene in oil palm (Elaeis guineensis Jacq) by bulk segregant analysis (BSA) and genetic mapping. In: MPOB (ed) Proc PIPOC Int Palm Oil Congr 2001. Malaysian Palm Oil Board (MPOB), Kuala Lumpur, Malaysia, pp 442–445Google Scholar
  5. Billotte N, Risterucci AM, Barcelos E, Noyer JL, Amblard P, Baurens FC (2001b) Development, characterisation, and across-taxa utility of oil palm (Elaeis guineensis Jacq) microsatellite markers. Genome 44:413–425CrossRefGoogle Scholar
  6. Castiglioni P, Ajmone-Marsan P, van Wijk R, Motto M (1999) AFLP markers in a molecular linkage map of maize: codominant scoring and linkage group distribution. Theor Appl Genet 99:425–431CrossRefGoogle Scholar
  7. Charcosset A (1996) L’identification de locus affectant des caractères quantitatifs (QTL) à l’aide de marqueurs génétiques est-elle justifiée pour la sélection? Select Fr 46:35–45Google Scholar
  8. Chen X, Temnykh S, Xu Y, Cho Y, McCouch SR (1997) Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L). Theor Appl Genet 95:553–567CrossRefGoogle Scholar
  9. Delseny M, Laroche M, Penon P (1983) Detection of sequences with Z-DNA forming potential in higher plants. Biochem Biophys Res Commun 116:113–120CrossRefGoogle Scholar
  10. Edwards KJ, Barker JHA, Daly A, Jones C, Karp A (1996) Microsatellite libraries enriched for several microsatellite sequences in plants. Biotechniques 20:758–760PubMedGoogle Scholar
  11. Gallais A (1996) Utilisation des marqueurs en sélection. Select Fr 46:47–58Google Scholar
  12. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-test cross mapping strategy and RAPD markers. Genetics 137:1121–1137PubMedGoogle Scholar
  13. Hartley CWS (1988) The oil palm, 2nd edn. Longman, LondonGoogle Scholar
  14. Hulbert SH, Ilott TW, Legg EJ, Lincoln SE, Lander ES, Michelmore RW (1988) Genetic analysis of the fungus Bremia lactucae, using restriction fragment length polymorphisms. Genetics 148:479–494Google Scholar
  15. Keim P, Schupp JM, Travis SE, Clayton K, Zhu T, Shi L, Ferreira A, Webb DM (1997) A high density soybean linkage map based on AFLP markers. Crop Sci 37:537–543Google Scholar
  16. Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175Google Scholar
  17. Lebrun P, Baudouin L, Bourdeix R, Konan JL, Barker JHA, Aldam C, Herran A, Ritter E (2001) Construction of a linkage map of the Rennell Island Tall coconut type (Cococ nucifera L) and QTL analysis for yield characters. Genome 44:962–970CrossRefGoogle Scholar
  18. Lespinasse D, Rodier-Goud M, Grivet L, Leconte A, Legnate H, Seguin M (2000) A saturated genetic linkage map of rubber tree (Hevea spp.) based on RFLP, AFLP, microsatellite, and isozyme markers. Theor Appl Genet 100:127–138CrossRefGoogle Scholar
  19. Mayes S, Jack PL, Marshall DF, Corley RHV (1997) Construction of a RFLP genetic linkage map for oil palm (Elaeis guineensis Jacq). Genome 40:116–122Google Scholar
  20. Meunier J, Gascon JP (1972) Le schéma de sélection du palmier à huile à l’IRHO. Oléagineux 27:1–12Google Scholar
  21. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions using segregating populations. Proc Natl Acad Sci USA 88:9828–9832PubMedGoogle Scholar
  22. Mohan M, Nair S, Bhagwat A, Krishna T, Yano M, Bhatia C, Sasaki T (1997) Genome mapping, molecular markers and marker assisted selection in crop plants. Mol Breed 3:87–103CrossRefGoogle Scholar
  23. Moretzsohn MC, Nunes CDM, Ferreira ME, Grattapaglia D (2000) RAPD linkage mapping of the shell thickness locus in oil palm (Elaeis guineensis Jacq). Theor Appl Genet 100:63–70CrossRefGoogle Scholar
  24. Muranty H (1996) Power of tests for quantitative trait loci detection using full-sib families in different schemes. Heredity 76:156–165Google Scholar
  25. Ooijen JW van, Voorrips RE (2001) joinmap 3.0. Software for the calculation of genetic linkage maps. Plant Research International, WageningenGoogle Scholar
  26. Rance KA, Mayes S, Price Z, Jack PL, Corley RHV (2001) Quantitative trait loci for yield components in oil palm (Elaeis guineensis Jacq). Theor Appl Genet 103:1302–1310CrossRefGoogle Scholar
  27. Risterucci AM, Grivet L, N’Goran JAK, Pieretti I, Flament MH, Lanaud C (2000) A high density linkage map of Theobroma cacao L. Theor Appl Genet 101:948–955CrossRefGoogle Scholar
  28. Ritter E, Gebhardt C, Salamini F (1990) Estimation of recombination frequencies and construction of RFLP linkage maps in plants from crosses between heterozygous parents. Genetics 224:645–654Google Scholar
  29. Ritter E, Aragonés A, Markussen T, Acheré V, Espinel S, Fladung M, Wrobel S, Faivre-Rampant P, Jeandroz S, Favre JM (2002) Towards construction of an ultra high density linkage map for Pinus pinaster. Ann For Sci 59:637–643CrossRefGoogle Scholar
  30. Rival A, Beule T, Barre P, Hamon S, Duval Y, Noirot M (1997) Comparative flow cytometric estimation of nuclear DNA content in oil palm (Elaeis guineensis) tissue-culture and seedling derived plants. Plant Cell Rep 16:884–887CrossRefGoogle Scholar
  31. Röser M, Johnson MAT, Hanson L (1997) Nuclear DNA amounts in palms (Arecaceae). Bot Acta 110:79–89Google Scholar
  32. Rouppe van der Voort JNAM, van Zandvoort P, van Eck HJ, Folkertsma RT, Hutten RCB, Draaistra J, Gommers FJ, Jacobsen E, Helder J, Bakker J (1997) Use of allele specificity of comigrating AFLP markers to align genetic maps from different potato genotypes. Mol Gen Genet 255:438–447CrossRefPubMedGoogle Scholar
  33. Roy R, Steffens DL, Gartside B, Jang GY, Brumbaugh JA (1996) Producing STR locus patterns from bloodstains and other forensic samples using an infrared fluorescent automated DNA sequencer. J Forensic Sci 41:418–424Google Scholar
  34. Shiex T, Gaspin C (1997) Cartagene: constructing and joining maximum likelihood genetic maps. In: Proc 5th Int Conf Intelligent Systems Mol Biol. Porto Caras, Halkidiki, Greece, pp 258–267Google Scholar
  35. Steffens DL, Sutter SL, Roemer SC (1993) An alternate universal forward primer for improved automated sequencing of M13. Biotechniques 15:580–582Google Scholar
  36. Tanksley SD, Ganal MW, Martin GB (1995) Chromosome landing: a paradigm for map-based cloning in plants with large genomes. Trends Genet 11:63–68CrossRefPubMedGoogle Scholar
  37. Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • N. Billotte
    • 1
  • N. Marseillac
    • 1
  • A.-M. Risterucci
    • 1
  • B. Adon
    • 2
  • P. Brottier
    • 4
  • F.-C. Baurens
    • 1
  • R. Singh
    • 8
  • A. Herrán
    • 6
  • H. Asmady
    • 9
  • C. Billot
    • 1
  • P. Amblard
    • 1
  • T. Durand-Gasselin
    • 1
  • B. Courtois
    • 1
  • D. Asmono
    • 5
  • S. C. Cheah
    • 8
  • W. Rohde
    • 7
  • E. Ritter
    • 6
  • A. Charrier
    • 3
  1. 1.Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD)UMR 1096 Polymorphismes d’Intérêt AgronomiqueMontpellier Cedex 5France
  2. 2.Centre National de Recherche Agronomique (CNRA)AbidjanIvory coast
  3. 3.ENSAM, INRAUniversité Montpellier IIMontpellier Cedex 01France
  4. 4.Centre National de Séquençage (GENOSCOPE)Evry CedexFrance
  5. 5.Indonesian Oil Palm Research Institute (IOPRI)MedanIndonesia
  6. 6.Centro de Arkaute, Departamento de Producción y Proteccion VegetalNEIKERVitoriaSpain
  7. 7.Max-Planck-Institut für Zuechtungsforschung (MPIZ)CologneGermany
  8. 8.Malaysia Palm Oil Board (MPOB)Kajang SelangorMalaysia
  9. 9.SOCFINDO (P.T. Socfin Indonesia)MedanIndonesia

Personalised recommendations