Theoretical and Applied Genetics

, Volume 110, Issue 4, pp 730–741 | Cite as

Two classes of 5S rDNA unit arrays of the silver fir, Abies alba Mill.: structure, localization and evolution

  • Višnja Besendorfer
  • Iva Krajačić-Sokol
  • Srećko Jelenić
  • Jasna Puizina
  • Jelena Mlinarec
  • Tonka Sviben
  • Dražena Papeš
Original Paper


The structure and organization of the 5S ribosomal DNA units of the silver fir, Abies alba Mill., as well as their position in the chromosome complement were investigated. PCR amplification of the gene and nontranscribed spacer region, sequence analysis and Southern hybridization, using a homologous probe, detected DNA sequences of approximately 550 bp and 700 bp. Sequence analysis of the spacers revealed that the difference in length between the sequences occurred in the middle spacer region as a result of the amplification of a 75-bp sequence of the short unit class, which is organized in four 54- to 68-bp tandem repeats in the long spacer unit. The 5S rDNA transcribed region is 120 bp long and shows high sequence similarity with other gymnosperm species. The comparative analysis of 5′ and 3′ flanking sequences of 5S rRNA genes of silver fir and other gymnosperms indicates that A. alba spacer units have the same rate of evolution and are more closely related to Larix and Pseudotsuga than to Pinus and Picea. Southern hybridization and fluorescence in situ hybridization of metaphase chromosomes of A. alba suggest that the short and long spacer units are organized as separate tandem arrays at two chromosomal loci on chromosomes V and XI.


Concerted Evolution Space Class Unit Class High Similarity Score Phenetic Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank M. Gradečki from the Forestry Research Institute ‘Jasrebarsko’ for preparing the plant material used in the cytogenetic study and K. Vlahoviček for sequence analysis and suggestions in the interpretation of the phylogeny results. This work was supported by research grant no. 119112 from the Ministry of Science, Education and Sport of the Republic of Croatia. Jasna Puizina acknowledges the support of the Gregor Mendel Institute, Vienna, Austria.


  1. Amarasinghe V, Carlson JE (1998) Physical mapping and characterization of 5S rRNA genes in Douglas-fir. J Hered 89:495–500CrossRefGoogle Scholar
  2. Basten CJ, Ohta T (1992) Simulation study of a multigene family, with special reference to the evolution of compensatory advantageous mutations. Genetics 132:247–252Google Scholar
  3. Brown GR, Carlson JE (1997) Molecular cytogenetics of the genes encoding 18S–5.8S–26S rRNA and 5S rRNA in two species of spruce (Picea). Theor Appl Genet 95:1–9Google Scholar
  4. Campell BR, Song Y, Posch TE, Cullis CA, Town CD (1992) Sequence and organization of 5S ribosomal RNA-encoding genes of Arabidopsis thaliana. Gene 112:225–228CrossRefPubMedGoogle Scholar
  5. Cronn RC, Zhao X, Paterson AH, Wendel JF (1996) Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J Mol Evol 42:685–705PubMedGoogle Scholar
  6. Doudrick RL, Heslop-Harrison JS, Nelson CD, Schmidt T, Nance WL, Schwarzacher T (1995) Karyotype of slash pine (Pinus elliottii var. elliottii) using patterns of fluorescence in situ hybridization and fluorochrome banding. J Hered 86:289–296Google Scholar
  7. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  8. Farjon A (1990) Pinaceae. Koelltz Scientific, Königstein, p 340Google Scholar
  9. Fulnaček J, Lim KY, Leitch AR, Kovařik A, Matyášek R (2002) Evolution and structure of 5S rDNA loci in allotetraploid Nicotiana tabacum and its putative parental species. Heredity 88:19–25CrossRefGoogle Scholar
  10. Gorman SW, Teasdale RD, Cullis CA (1992) Structure and organization of the 5S rRNA genes (5S DNA) in Pinus radiata (Pinaceae). Plant Syst Evol 183:223–234Google Scholar
  11. Gottlob-McHugh SG, Lévesque M, MakKenzie K, Olson M, Yarosh O, Johnson DA (1990) Organization of the 5S rRNA genes in the soybean Glycine max (L.) Merill and conservation of the 5S rDNA repeat structure in higher plants. Genome 33:486–494PubMedGoogle Scholar
  12. Hayes JJ, Tullius TD (1992) Structure of the TF-IIIA-5S DNA complex. J Mol Biol 227:407–417CrossRefGoogle Scholar
  13. Hizume M, Shibata F, Kondo K, Hoshi Y, Kondo T, Ge S, Yang QE, Hong DY (1999) Identification of chromosomes in two Chinese spruce species by multicolor fluorescence in situ hybridization. Chrom Sci 3:37–41Google Scholar
  14. Hori H, Lim B-L, Osawa S (1985) Evolution of green plants as deduced from 5S rRNA sequences. Proc Natl Acad Sci USA 82:820–823Google Scholar
  15. Liepelt S, Bialozyt R, Ziegenhagen B (2002) Wind-dispersed pollen mediates postglacial gene flow among refugia. Proc Nat Acad Sci USA 99:14590–14594CrossRefGoogle Scholar
  16. Liu T-S (1971) A monograph of the genus Abies. National Taiwan University, Taipei, p 608Google Scholar
  17. Liu Z-L, Zhang D, Hong D-Y, Wang X-R (2003a) Chromosomal localization of 5S and 18S–25S ribosomal DNA sites in five Asian pines using fluorescent in situ hybridization. Theor Appl Genet 106:198–204Google Scholar
  18. Liu Z-L, Zhang D, Wang X-Q, Ma X-F, Wang X-R (2003b) Intragenomic and interspecific 5S rDNA sequence variation in five Asian pines. Am J Bot 90(1):17–24Google Scholar
  19. Lubaretz O, Fuchs J, Ahne R, Meister A, Schubert I (1996) Karyotyping of tree Pinaceae species via fluorescent in situ hybridization and computer-aided chromosome analysis. Theor Appl Genet 92:411–416CrossRefGoogle Scholar
  20. Mashkova TD, Barciszewska MZ, Joachimiak A, Nalaskowska M, Barciszewski J (1990) Molecular evolution of plants as deduced from changes in free energy of 5S ribosomal RNAs. Int J Biol Macromol 12:247–250CrossRefGoogle Scholar
  21. Melekhovets YF, Troitsky AV, Valiejo-Roman KM, Bobrova VK, Antonov AS (1988) Nucleotide sequences of cytosolic 5S ribosomal RNAs from two gymnosperms, Gnetum gnemon and Ephedra kokanica. Nucleic Acid Res 16:4155Google Scholar
  22. Moran GF, Smith D, Bell JC, Appels R (1992) The 5S RNA genes in Pinus radiata and the spacer region as a probe for relationships between Pinus species. Plant Syst Evol 183:209–221Google Scholar
  23. Rushforth KD (1987) Conifers. Facts on File, New York, p 232Google Scholar
  24. Sastri DC, Hilu K, Appels R, Lagudah ES, Playford J, Baum BR (1992) An overview of evolution in plant 5S DNA. Plant Syst Evol 183:169–181Google Scholar
  25. Schlötterer C, Tautz D (1994) Chromosomal homogeneity of Drosophila ribosomal DNA arrays suggests intrachromosomal exchanges drive concerted evolution. Curr Biol 4:777–783CrossRefGoogle Scholar
  26. Schwarzacher T, Heslop-Harrison JS (2000) Practical in situ hybridization. Bios Scientific, Oxford, p 203Google Scholar
  27. Scoles GJ, Gill BS, Xin Z-Y, Clarke BC, McIntyre CL, Chapman C, Appels R (1988) Frequent duplication and deletion events in the 5S RNA genes and the associated space regions of the Triticae. Plant Syst Evol 160:105–122CrossRefGoogle Scholar
  28. Shibata F, Hizume M (2002) Evolution of 5S rDNA units and their chromosomal localization in Allium cepa and Allium schoenoprasum revealed by microdissection and FISH. Theor Appl Genet 105:167–172CrossRefGoogle Scholar
  29. Siljak-Yakovlev S, Cerbah M, Coulaud J, Stoian V, Brown SC, Zoldoš V, Jelenić S, Papeš D (2002) Nuclear DNA content, base composition, heterochromatin and rDNA in Picea omorika and Picea abies. Theor Appl Genet 104:505–512CrossRefGoogle Scholar
  30. Smith GP (1976) Evolution of repeated DNA sequences by unequal crossover. Science 191:528–535PubMedGoogle Scholar
  31. Soltis DE, Soltis PS, Doyle JJ (1998) Molecular systematics of plants: DNA sequencing. Kluwer, Boston, p 574Google Scholar
  32. Swofford DL (1998) PAUP. Phylogenetic analysis using parsimony (*and or other methods). Version 4.0. Sinauer, SunderlandGoogle Scholar
  33. Szymanski M, Specht T, Barciszewska MZ, Barciszewski J, Erdmann VA (1998) 5S rRNA data bank. Nucleic Acid Res 26:156–159CrossRefGoogle Scholar
  34. Toress-Ruiz RA, Hemleben V (1994) Pattern and degree of methylation in ribosomal RNA genes of Cucurbita pepo L. Plant Mol Biol 26:1167–1179CrossRefGoogle Scholar
  35. Trontin J-F, Grandemange C, Favre J-M (1999) Two highly divergent 5S rDNA unite size classes occur in composite tandem array in European larch (Larix decidua Mill.) and Japanese larch [Larix kaempferi (Lamb.) Carr]. Genome 42:837–848CrossRefGoogle Scholar
  36. Van de Peer Y, De Baere R, Cauwenbergh J, De Watcher R (1990) Evolution of green plants and their relationship with other photosynthetic eukaryotes as deduced from 5S ribosomal RNA sequences. Plant Syst Evol 170:85–96Google Scholar
  37. Vendramin GG, Degen B, Petit RJ, Anzidei M, Madaghiele A, Ziegenhagen B (1999) High level of variation at Abies alba chloroplast microsatellite loci in Europe. Mol Ecol 8:1117–1126CrossRefGoogle Scholar
  38. Vidaković M (1982) Četinjače. Sveučilišna naklada Liber, Zagreb, p 710Google Scholar
  39. Volkov RA, Borisjuk NV, Panchuk II, Schweizer D, Hemleben V (1999) Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum. Mol Biol Evol 16:311–320Google Scholar
  40. Wang X-Q, Tank DC, Sang T (2000) Phylogeny and divergence times in Pinaceae: evidence from three genomes. Mol Biol Evol 17:773–781Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Višnja Besendorfer
    • 1
  • Iva Krajačić-Sokol
    • 1
  • Srećko Jelenić
    • 1
  • Jasna Puizina
    • 2
    • 3
  • Jelena Mlinarec
    • 1
  • Tonka Sviben
    • 1
  • Dražena Papeš
    • 1
  1. 1.Department of Molecular Biology, Faculty of ScienceUniversity of ZagrebZagrebCroatia
  2. 2.Department of Biology, Faculty of Natural Sciences and MathematicsUniversity of SplitSplitCroatia
  3. 3.Gregor Mendel Institute of Molecular Plant BiologyAustrian Academy of ScienceViennaAustria

Personalised recommendations