Theoretical and Applied Genetics

, Volume 110, Issue 7, pp 1169–1176 | Cite as

AFLP reveals structural details of genetic diversity within cultivated olive germplasm from the Eastern Mediterranean

  • Carolyn A. Owen
  • Elena-Craita Bita
  • Georgios Banilas
  • Shady E. Hajjar
  • Vardis Sellianakis
  • Uygun Aksoy
  • Serra Hepaksoy
  • Rony Chamoun
  • Salma N. Talhook
  • Ioannis Metzidakis
  • Polydefkis Hatzopoulos
  • Panagiotis Kalaitzis
Original Paper

Abstract

Amplified fragment length polymorphism (AFLP) analysis was used to assess genetic inter-relationships among olive varieties cultivated in the Eastern Mediterranean Basin. The genotypes sampled included most of the important cultivars from Turkey, Greece and the Middle East and selected genotypes from the Western Mediterranean area. A total of 119 polymorphic markers were generated from five selective primer-pair combinations. The combined data sets generated by just two primer-pairs were adequate to discriminate between all 65 genotypes, while each primer-pair could individually identify up to 64 genotypes. A factorial correspondence analysis (FCA) plot indicated that the cultivars clustered into two relatively modestly defined groups. The first broad group was dominated by cultivars from Turkey but also included genotypes originating from the Middle East (Syria and Lebanon) that collectively formed a tight subcluster. The second group comprised Greek cultivars and those originating from the Western Mediterranean. A significant genetic distance value between Greek and Turkish cultivars was provided by an analysis of molecular variance (amova). There was also evidence of substructure here, with an apparent separation of most Spanish and Italian clones. These findings are in general accordance to previous suggestions of an East-West divergence of olive cultivars, although the dichotomy is less extensive than reported previously and complicated by regional variation within each group.

References

  1. Angiolillo A, Mencuccini M, Baldoni L (1999) Olive genetic diversity assessed using amplified fragment length polymorphisms. Theor Appl Genet 98:411–421CrossRefGoogle Scholar
  2. Banilas G, Minas J, Gregoriou C, Demoliou C, Kourti A, Hatzopoulos P (2003) Genetic diversity among accessions of an ancient olive variety of Cyprus. Genome 46:370–376CrossRefPubMedGoogle Scholar
  3. Bassam BJ, Caetano-Anollés G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83PubMedGoogle Scholar
  4. Belaj A, Trujillo I, De la Rosa R, Rallo L, Giménez MJ (2001) Polymorphism and discrimination capacity of randomly amplified polymorphic markers in an olive germplasm bank. J Am Soc Hortic Sci 126:64–71Google Scholar
  5. Belaj A, Satovic Z, Rallo L, Trujillo I (2002) Genetic diversity and relationships in olive (Olea europaea L.) germplasm collections as determined by randomly amplified polymorphic DNA. Theor Appl Genet 105:638–644CrossRefPubMedGoogle Scholar
  6. Belaj A, Satovic Z, Cipriani G, Baldoni L, Testolin R, Rallo L, Trujillo I (2003a) Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and their effectiveness in establishing genetic relationships in olive. Theor Appl Genet 107:736–744CrossRefPubMedGoogle Scholar
  7. Belaj A, Satovic Z, Ismaili H, Panajoti D, Rallo L, Trujillo I (2003b) RAPD genetic diversity of Albanian olive germplasm and its relationships with other Mediterranean countries. Euphytica 130:387–395CrossRefGoogle Scholar
  8. Benzécri JP (1982) L’analyse des données, vol II. L’ analyse des correspondances. Dunod, ParisGoogle Scholar
  9. Besnard G, Bervillé A (2000) Multiple origins for the Mediterranean olive (Olea europaea L.) based upon mitochondrial DNA polymorphisms. C R Acad Sci Paris Ser III 323:173–181Google Scholar
  10. Besnard G, Baradat P, Bervillé A (2001) Genetic relationships in the olive (Olea europaea L.) reflect multilocal selection of cultivars. Theor Appl Genet 102:251–258CrossRefGoogle Scholar
  11. Besnard G, Khadari B, Baradat P, Bervillé A (2002a) Olea europaea (Oleaceae) phylogeography based on chloroplast DNA polymorphism. Theor Appl Genet 104:1353–1361CrossRefPubMedGoogle Scholar
  12. Besnard G, Khadari B, Baradat P, Bervillé A (2002b) Combination of chloroplast and mitochondrial DNA polymorphisms to study cytoplasm genetic differentiation in the olive (Olea europaea L.) complex. Theor Appl Genet 105:139–144CrossRefPubMedGoogle Scholar
  13. Blondel J, Aronson J (1995) Biodiversity and ecosystem function in the Mediterranean Basin: human and non-human determinants. In: Davis GW, Richardson DM (eds) Mediterranean-type ecosystems (The function of biodiversity). Springer, Berlin Heidelberg New York, pp 43–119Google Scholar
  14. Bronzini de Caraffa V, Maury J, Gambotti C, Breton C, Bervillé A, Giannettini J (2002) Mitochondrial DNA variation and RAPD mark oleasters, olive and feral olive from Western and Eastern Mediterranean. Theor Appl Genet 104:1209–1216CrossRefPubMedGoogle Scholar
  15. Cipriani G, Marrazzo MT, Marconi R, Cimato A, Testolin R (2002) Microsatellite markers isolated in olive (Olea europaea L.) are suitable for individual fingerprinting and reveal polymorphism within ancient cultivars. Theor Appl Genet 104:223–228CrossRefPubMedGoogle Scholar
  16. Contento A, Ceccarelli M, Gelati MT, Maggini F, Baldoni L, Cionini PG (2002) Diversity of Olea genotypes and the origin of cultivated olives. Theor Appl Genet 104:1229–1238CrossRefPubMedGoogle Scholar
  17. Dice LR (1945) Measures of the amount of ecological association between species. Ecology 26:297–302Google Scholar
  18. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  19. Fabbri A, Hormaza JI, Polito VS (1995) Random amplified polymorphic DNA analysis of olive (Olea europaea L.) cultivars. J Am Soc Hortic Sci 120:538–542Google Scholar
  20. Hatzopoulos P, Banilas G, Giannoulia K, Gazis F, Nikoloudakis N, Milioni D, and Haralampidis K (2002) Breeding, molecular markers and molecular biology of the olive tree. Eur J Lipid Sci Technol 104:574–586CrossRefGoogle Scholar
  21. Loukas M, Krimbas CB (1983) History of olive cultivars based on their genetic distances. J Hortic Sci 58:121–127Google Scholar
  22. Lumaret R, Amane M, Ouazzani N, Baldoni L, Debain C (2000) Chloroplast DNA variation in the cultivated and wild olive taxa of the genus Olea. Theor Appl Genet 101:547–553CrossRefGoogle Scholar
  23. Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  24. Nikoloudakis N, Banilas G, Metzidakis J, Gazis F, Hatzopoulos P (2003) Discrimination and genetic diversity among cultivated olives of Greece using RAPD markers. J Am Soc Hortic Sci 128:741–746Google Scholar
  25. Ouazzani N, Lumaret R, Villemur P, Di Giusto F (1993) Leaf allozyme variation in cultivated and wild olive trees (Olea euroeaea L). J Hered 84:34–42Google Scholar
  26. Rohlf FJ (1998) ntsys-pc. Numerical taxonomy and multivariate analysis system, ver. 2.00. Exeter Software, SetaukerGoogle Scholar
  27. Rosa R la, Angiolillo A, Guerrero C, Pellegrini M, Rallo L, Besnard G, Berville A, Martin A, Baldoni L (2003) A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theor Appl Genet 106:1273–1282PubMedGoogle Scholar
  28. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer length polymorphisms in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA 81:8014–8018PubMedGoogle Scholar
  29. Sanz-Cortés F, Badenes ML, Paz S, Ïñiguez A, Llácer G (2001) Molecular characterization of olive cultivars using RAPD markers. J Am Soc Hortic Sci 126:7–12Google Scholar
  30. Sanz-Cortés F, Parfitt DE, Remero C, Struss D, Llácer G, Badenes ML (2003) Intraspecific olive diversity assessed with AFLP. Plant Breed 122:173–177Google Scholar
  31. Sensi E, Vignani R, Scali M, Masi E, Cresti M (2003) DNA fingrprinting and genetic relatedness among cultivated varieties of Olea euroeaea L. estimated by AFLP analysis. Sci Hortic 97:379–388CrossRefGoogle Scholar
  32. Sneath PHA, Sokal RR (1973) Numerical taxonomy: the principles and practice of numerical classification. W.H. Freeman, San FranciscoGoogle Scholar
  33. Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kans Sci Bull 38:1409–1438Google Scholar
  34. Terral J-F, Alonso N, Capdevila RB, Chatti N, Fabre L, Fiorentino G, Marinval P, Jorda GP, Pradat B, Rovira N, Alibert P (2004) Historical biogeography of olive domestication (Olea euroeaea L.) as revealed by geometrical morphometry applied to biological and archaeological material. J Biogeogr 31:63–77Google Scholar
  35. Vos P, Hogers R, Bleeker M, Reijans M, Vande Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedGoogle Scholar
  36. Zohary D, Hopf M (1994) Olive: Olea europaea. Domestication of plants in the Old World. Clarendon Press, Oxford, pp 137–143Google Scholar
  37. Zohary D, Spiegel-Roy P (1975) Beginnings of fruit growing in the Old World. Science 187:319–327Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Carolyn A. Owen
    • 1
  • Elena-Craita Bita
    • 1
  • Georgios Banilas
    • 4
  • Shady E. Hajjar
    • 1
  • Vardis Sellianakis
    • 1
  • Uygun Aksoy
    • 2
  • Serra Hepaksoy
    • 2
  • Rony Chamoun
    • 3
  • Salma N. Talhook
    • 3
  • Ioannis Metzidakis
    • 5
  • Polydefkis Hatzopoulos
    • 4
  • Panagiotis Kalaitzis
    • 1
  1. 1.Department of Horticultural Genetics and BiotechnologyMediterranean Agronomic InstituteChaniaGreece
  2. 2.Department of Horticulture, Faculty of AgricultureEge UniversityIzmirTurkey
  3. 3.Department of Crop Production and ProtectionAmerican University of BeirutBeirutLebanon
  4. 4.Laboratory of Molecular BiologyAgricultural University of AthensGreece
  5. 5.Institute of Subtropical Plants and Olive TreeNAGREFChaniaGreece

Personalised recommendations