Theoretical and Applied Genetics

, Volume 109, Issue 8, pp 1632–1640

Environment characterisation for the interpretation of environmental effect and genotype × environment interaction

Original Paper

Abstract

Increasing attention is being paid to environment characterisation as a means of identifying the environmental factors determining grain protein content (GPC) in durum wheat. New insights in crop physiology and agronomy have led to the development of crop simulation models. Those models can reconstruct plant development for past cropping seasons. One major advantage of these models is that they can also indicate the intensity of limiting factors affecting plants during particular developmental stages. The main environmental factors determining GPC in durum wheat can be investigated by introducing the intensity of limiting factors into genotype × environment (G×E) models. In our case, limiting factors corresponding to water deficit and nitrogen availability were calculated for the development period between booting and heading. These variables were then introduced into a clustering model. This model is an extension of factorial regression applied to discrete environment and genotypic variables. This procedure effectively described the environment main effect: around 30.9% of the sum of squares of the environment main effect was accounted for, using less than 33% of the degrees of freedom. It also partially accounted for G×E interaction. Our methodology, coupling the use of crop simulation and G×E analysis models, is of potential value for improving our understanding of the main development stages and identification of environmental limiting factors for the development of GPC.

References

  1. Brancourt-Hulmel M, Biarnès-Dumoulin V, Denis J-B (1997) Points de repère dans l’analyse de la stabilité et de l’interaction génotype-milieu en amélioration des plantes. Agronomie 17:219–246 Google Scholar
  2. Brancourt-Hulmel M, Denis J-B, Lecomte C (2000) Determining environmental covariates which explain genotype environment interaction in winter wheat through probe genotypes and biadditive factorial regression. Theor Appl Genet 100:285–298CrossRefGoogle Scholar
  3. Brancourt-Hulmel M, Lecomte C, Denis J-B (2001) Choosing probe genotypes for the analysis of genotype-environment interaction in winter wheat trials. Theor Appl Genet 103:371–382CrossRefGoogle Scholar
  4. Brancourt-Hulmel M, Lecomte C (2003) Effect of environmental variates on genotype x environment interaction of winter wheat: a comparison of biadditive factorial regression to AMMI. Crop Sci 43:608–617Google Scholar
  5. Decoux G, Denis J-B (1991) Intera. Logiciels pour l’interprétation statistique de l’interaction entre deux facteurs. Laboratoire de biométrie, INRA, 78026 Versailles cedexGoogle Scholar
  6. Denis J-B (1989) Two-way analysis using covariates. Statistics 19:123–132Google Scholar
  7. Denis J-B (1991) Ajustement de modèles linéaires et bilinéaires sous contraintes linéaires avec données manquantes. Rev Stat Appl 34:5–24Google Scholar
  8. Denis J-B, Vincourt P (1982) Panorama des méthodes statistiques d’analyse des interaction génotype X milieu. Agronomie 2(3):219–230Google Scholar
  9. Desclaux D (1996) De l’intérêt de génotypes révélateurs de facteurs limitants dans l’analyse des interaction génotype x milieu chez le soja (Glycine max. L. Merrill). Thèse de doctorat, Institut National Polytechnique de ToulouseGoogle Scholar
  10. Finlay KW, Wilkinson GN (1963) The analysis of adaptation in plant-breeding programme. Aust J Agric Res 14:742–754Google Scholar
  11. Foucteau V, El Daouk M, Baril C (2001) Interpretation of genotype by environment interaction in two sunflower experimental networks. Theor Appl Genet 102:327–334CrossRefGoogle Scholar
  12. Gate P (1995) Ecophysiologie du blé-de la plante à la culture, techniques and Documentation. Lavoisier, Paris, p429Google Scholar
  13. Gauch HG (1992) Statistical analysis of regional yield trials: AMMI analysis of factorial designs. Elsevier, AmsterdamGoogle Scholar
  14. Gollob HF (1968) A statistical model which combines features of factor analytic and analysis of variance techniques. Psychometrika 3:73–116Google Scholar
  15. Mandel J (1969) The partitioning of interaction in analysis of variance. J Res Nat Bur Stand (US) 738(4):309–327Google Scholar
  16. Ottman MJ, Doerge TA, Martin EC (2000) Durum grain quality as affected by nitrogen fertilization near anthesis and irrigation during grain fill. Agron J 92:1035–1041Google Scholar
  17. Reynolds MP, Trethowan R, Crossa J, Vargas M, Sayre KD (2002) Physiological factors associated with genotype by environment interaction in wheat. Field Crops Res 75:139–160CrossRefGoogle Scholar
  18. SAS Institute (1996) SAS/STAT User’s Guide, 2nd edn. SAS Institute Inc., CaryGoogle Scholar
  19. Soltner D (2000) Les bases de la production végétale, Tome1, Le sol et son amélioration, Sciences et techniques agricoles, Saintes-Gemmes-Sur-Loire, p472Google Scholar
  20. Strong WM (1982) Effect of late application of nitrogen on the yield and protein content of wheat. Aust J Exp Agric Anim Husb 22:54–61Google Scholar
  21. Vargas M, Crossa J, Eeuwijk FA van, Ramirez ME, Sayre K (1999) Using partial least squares, factorial regression, and AMMI models for interpreting genotype × environment interaction. Crop Sci 39:955–967Google Scholar
  22. Wuest SB, Cassman KG (1992) Fertilizer-nitrogen use efficiency of irrigates wheat: I. Uptake efficiency of preplant versus late-season application. Agron J 84:682–688Google Scholar
  23. Yates F, Cochran WG (1938) The analysis of groups of experiments. J Agric Sci (Camb) 28:556–580Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.UMR 1097 Diversité et Génome des Plantes Cultivées : Institut de la Recherche Agronomique INRA-SGAPMauguioFrance

Personalised recommendations