Theoretical and Applied Genetics

, Volume 109, Issue 7, pp 1448–1458 | Cite as

Development of a standard set of microsatellite reference alleles for identification of grape cultivars

  • P. This
  • A. Jung
  • P. Boccacci
  • J. Borrego
  • R. Botta
  • L. Costantini
  • M. Crespan
  • G. S. Dangl
  • C. Eisenheld
  • F. Ferreira-Monteiro
  • S. Grando
  • J. Ibáñez
  • T. Lacombe
  • V. Laucou
  • R. Magalhães
  • C. P. Meredith
  • N. Milani
  • E. Peterlunger
  • F. Regner
  • L. Zulini
  • E. Maul
Original Paper

Abstract

In order to investigate the comparability of microsatellite profiles obtained in different laboratories, ten partners in seven countries analyzed 46 grape cultivars at six loci (VVMD5, VVMD7, VVMD27, VVS2, VrZAG62, and VrZAG79). No effort was made to standardize equipment or protocols. Although some partners obtained very similar results, in other cases different absolute allele sizes and, sometimes, different relative allele sizes were obtained. A strategy for data comparison by means of reference to the alleles detected in well-known cultivars was proposed. For each marker, each allele was designated by a code based on the name of the reference cultivar carrying that allele. Thirty-three cultivars, representing from 13 to 23 alleles per marker, were chosen as references. After the raw data obtained by the different partners were coded, more than 97% of the data were in agreement. Minor discrepancies were attributed to errors, suboptimal amplification and visualization, and misscoring of heterozygous versus homozygous allele pairs. We have shown that coded microsatellite data produced in different laboratories with different protocols and conditions can be compared, and that it is suitable for the identification and SSR allele characterization of cultivars. It is proposed that the six markers employed here, already widely used, be adopted as a minimal standard marker set for future grapevine cultivar analyses, and that additional cultivars be characterized by means of the coded reference alleles presented here. The complete database is available at http://www.genres.de/eccdb/vitis/. Cuttings of the 33 reference cultivars are available on request from the Institut National de la Recherche Agronomique Vassal collection (didier.vares@ensam.inra.fr).

Notes

Acknowledgements

This work was supported in part by a European Union research grant (GENRES081) for the analysis and management of grapevine genetic resources throughout Europe. The authors wish also to thanks Peter Isaac, Christopher Owens and Peter Cousins for useful comments. The authors are grateful to Pr. Bruce Reisch for further comments, which helped improve this paper.

Supplementary material

transformation_data.mdb (462 kb)
Transformation data (mdb 473 KB)
Coded_data-EMS.xls (116 kb)
Coded data (xls 118 KB)
Experimental_conditions.xls (24 kb)
Experimental conditions (xls 24 KB)
Numerical_data-EMS.xls (80 kb)
Numerical data (xls 82 KB)

References

  1. Alleweldt G, Dettweiler E (1994) The genetic resources of Vitis: world list of grapevine collections, 2nd edn. BAZ IRZ Geilweilerhof, SiebeldingenGoogle Scholar
  2. Aradhya MK, Dangl GS, Prins BH, Boursiquot JM, Walker AM, Meredith CP, Simon CJ (2003) Genetic structure and differentiation in cultivated grape Vitis vinifera L. Genet Res (Camb) 81:179–192CrossRefGoogle Scholar
  3. Bassam BJ, Anolles GC, Gresshof PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83PubMedGoogle Scholar
  4. Botta R, Scott NS, Eynard I, Thomas MR (1995) Evaluation of microsatellite sequence-tagged site markers for characterizing Vitis vinifera cultivars. Vitis 34:99–102Google Scholar
  5. Bourquin JC, Sonko A, Otten L, Walter B (1993) Restriction fragment length polymorphism and molecular taxonomy in Vitis vinifera L. Theor Appl Genet 87:431–438Google Scholar
  6. Boursiquot JM, This P (1996) Les nouvelles techniques utilisées en ampélographie: informatique et marquage. In: La viticulture à l’aube du IIIème Millénaire. J Int Sci Vigne Vin hors série, pp 13–23Google Scholar
  7. Bowers JE, Meredith CP (1996) Genetic similarities among wine grape cultivars revealed by restriction fragment-length polymorphism (RFLP) analysis. J Am Soc Hortic Sci 121:620–624Google Scholar
  8. Bowers JE, Dangl GS, Vignani R, Meredith CP (1996) Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome 39:628–633Google Scholar
  9. Bowers JE, Boursiquot JM, This P, Chu K, Johansson H, Meredith C (1999a) Historical genetics: the parentage of Chardonnay, Gamay, and other wine grapes of northeastern France. Science 285:1562–1565CrossRefPubMedGoogle Scholar
  10. Bowers JE, Dangl GS, Meredith CP (1999b) Development and characterization of additional microsatellite DNA markers for grape. Am J Enol Viticult 50:243–246Google Scholar
  11. Bredemeijer GMM, Cooke R, Ganal M, Peeters R, Isaac P, Norordijk Y, Rendell S, Jackson J, Röder MS, Wendehake K, Dijcks M, Amelaine M, Wickaert V, Bertrand L, Vosman B (2002) Construction and testing of a microsatellite database containing more than 500 tomato varieties. Theor Appl Genet 105:1019–1026CrossRefPubMedGoogle Scholar
  12. Brownstein MJ, Carpten JD, Smith JR (1996) Modulation of non-templated addition by Taq polymerase: primer modifications that facilitated genotyping. Biotechniques 20:1004–1010PubMedGoogle Scholar
  13. Cervera MT, Cabezas JA, Sancha JC, Martinez de Toda F, Martinez Zapater JM (1998) Application of AFLPs to the characterization of grapevine Vitis vinifera L. genetic resources. A case study with accessions from Rioja (Spain). Theor Appl Genet 97:51–59Google Scholar
  14. Cipriani G, Frazza G, Peterlunger E, Testolini R (1994) Grapevine fingerprinting using microsatellite repeats. Vitis 33:211–215Google Scholar
  15. Crespan M, Milani N (2001) The Muscats: a molecular analysis of synonyms, homonyms and genetic relationships within a large family of grapevine cultivars. Vitis 40:23–30Google Scholar
  16. Crespan M, Botta R, Milani N (1999) Molecular characterization of twenty seeded and seedless table cultivars (Vitis vinifera L.). Vitis 38:87–92Google Scholar
  17. Dettweiler E, Jung A, Zyprian E, Töpfer R (2000a) Grapevine cultivar Müller-Thurgau and its true to type descent. Vitis 39:63–65Google Scholar
  18. Dettweiler E, This P, Eibach R (2000b) The European network for grapevine genetic resources conservation and characterization. In: XXVth World Congress on Grape and Wine, Paris, June 2000, pp 1–10Google Scholar
  19. Dion R (1977) Histoire de la vigne et du vin en France des origines au XIX\graveeme siècle. Flammarion, Paris, p 768Google Scholar
  20. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  21. Ferreira Monteiro F, Nunes E, Magalhaes R, Faria MA, Martins A, Bowers JE, Meredith CP (2000) Fingerprinting of the main Vitis vinifera varieties grown in the northern region of Portugal. Acta Hortic 528:121–127Google Scholar
  22. Franks T, Botta R, Thomas MR, Franks J (2002) Chimerism in grapevines: implication for cultivar identity, ancestry and genetic improvement. Theor Appl Genet 104:192–199CrossRefPubMedGoogle Scholar
  23. Fregoni M (1991) Origines de la vigne et de la viticulture. Musumeci, Quart Italie, p 160Google Scholar
  24. Galet P (1991) Précis d’ampélographie pratique. In: Galet P (ed) Imprimerie Déhan, 6\‘eme edn. Montpellier, p 257Google Scholar
  25. Galet P (2000) Dictionnaire encyclopédique des cépages. Hachette, p 936Google Scholar
  26. Ghosh S, Karanjawala ZE, Hauser ER, Ally DS, Knapp JI, Rayman JB, Musick A, Tannenbaum J, Te C, Shapiro S, Eldridge W, Musick T, Martin C, Smith JR, Carpten JD, Brownstein MJ, Powell JI, Whiten R, Chines P, Nylund SJ, Magnuson VL, Boehnke M, Collins FS, F.U.S.I.O.N. Group (1997) Methods for precise sizing, automated binning of alleles, and reduction of error rates in large-scale genotyping using fluorescently labeled dinucleotide markers. Genome Res 7:165–178PubMedGoogle Scholar
  27. Grando MS, De Micheli L, Biasetto L, Scienza A (1995) RAPD markers in wild and cultivated Vitis vinifera. Vitis 34:37–39Google Scholar
  28. Haberl M, Tautz D (1999) Comparative allele sizing can produce inaccurate allele size differences for microsatellites. Mol Ecol 8:1347–1350CrossRefPubMedGoogle Scholar
  29. Hu G (1993) DNA polymerase-catalyzed addition of nontemplated extra nucleotides to the 3′ end of a DNA fragment. Cell Biol 12:763–770Google Scholar
  30. IPGRI, UPOV, OIV (1997) Descripteurs de la vigne (Vitis spp.). Union internationale pour la protection des obtentions végétales. Genève, Suisse/Office international de la Vigne et du Vin, Paris, France/Institut international des ressources phytogénétiques, RomeGoogle Scholar
  31. Lamboy WF, Alpha C (1998) The utility of simple sequence repeats (SSRs) for DNA fingerprinting germplasm accessions of grape (Vitis L.) species. J Am Soc Hortic Sci 123:182–188Google Scholar
  32. Lin H, Walker MA (1998) Identifying grape rootstocks with simple sequence repeat (SSR) DNA markers. Am J Enol Viticult 49:403–407Google Scholar
  33. Loureiro MD, Martínez MC, Boursiquot JM, This P (1998) Molecular marker analysis of Vitis vinifera ‘Albariño’ and some similar grapevine cultivars. J Am Soc Hortic Sci 123:842–848Google Scholar
  34. Regner F, Steinkellner H, Turetschek E, Stadlhuber A, Glössl J (1996) Genetische Charakterisierung von Rebsorten (Vitis vinifera) durch Mikrosatelliten- Analyse. Mitt Klosterneuburg 46:52–60Google Scholar
  35. Riaz S, Garrison KE, Dangl GS, Boursiquot JM, Meredith CP (2002) Genetic divergence and chimerism within ancient asexually propagated winegrape cultivars. J Am Soc Hortic Sci 127:508–514Google Scholar
  36. Riaz S, Dangl GS, Edwards KJ, Meredith CP (2003) A microsatellite based framework linkage map of Vitis vinifera L. Theor Appl Genet 108:864–872. DOI  10.1007/s00122-003-1488-5 Google Scholar
  37. Röder MS, Wendehake K, Korzun V, Bredemeijer G, Laborie D, Bertrand L, Isaac P, Rendell S, Jackson J, Cooke RJ, Vosman B, Ganal M (2002) Construction and analysis of a microsatellite-based database of European wheat varieties. Theor Appl Genet 106:67–73PubMedGoogle Scholar
  38. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  39. Sefc KM, Regner F, Turetschek E, Glössl J, Steinkellner H (1999) Identification of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome 42:367–373CrossRefPubMedGoogle Scholar
  40. Sefc KM, Lopes MS, Lefort F, Botta R, Roubelakis-Angelakis KA, Ibañez J, Pejic I, Wagner HW, Glössl J, Steinkellner H (2000) Microsatellite variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theor Appl Genet 100:498–505CrossRefGoogle Scholar
  41. Sefc KM, Lefort F, Grando MS, Scott K, Steinkellner H, Thomas MR (2001) Microsatellite markers for grapevine: a state of the art. In: Roubelakis-Angelakis KA (ed) Molecular biology and biotechnology of grapevine. Kluwer, Amsterdam, pp 433–463Google Scholar
  42. Sensi E, Vignani R, Rohde W, Biricolti S (1997) Characterization of genetic biodiversity with Vitis vinifera L. Sangiovese and Colorino genotypes by AFLP and ISTR DNA marker technology. Vitis 35:183–188Google Scholar
  43. Smith JR, Carpten JD, Brownstein MJ, Ghosh S, Magnuson VL, Gilbert DA, Trent JM, Collins FS (1995) Approach to genotyping errors caused by nontemplated nucleotide addition by Taq DNA polymerase. Genome Res 5:312–317PubMedGoogle Scholar
  44. Striem MJ, Spiegel-Roy P, Ben-Hayyim G, Beckman J, Gidoni D (1990) Genomic DNA fingerprinting of Vitis vinifera by the use of multi-loci probes. Vitis 29:223–227Google Scholar
  45. Tessier C, David J, This P, Boursiquot JM, Charrier A (1999) Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L. Theor Appl Genet 98:171–177CrossRefGoogle Scholar
  46. This P, Dettweiler E (2003) EU-project GENRES ct96 no81: European Vitis database and results regarding the use of a common set of microsatellite markers. Acta Hortic 603:59–66Google Scholar
  47. Thomas MR, Scott NS (1993) Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSs). Theor Appl Genet 86:985–990Google Scholar
  48. Thomas MR, Cain P, Scott NS (1994) DNA typing of grapevines: a universal methodology and database for describing cultivars and evaluating genetic relatedness. Plant Mol Biol 25:939–949PubMedGoogle Scholar
  49. Tixier MH, Sourdille P, Röder M, Leroy P, Bernard M (1997) Detection of wheat microsatellites using a non radioactive silver-nitrate staining method. J Genet Breed 51:175–177Google Scholar
  50. Vignani R, Bowers JE, Meredith CP (1996) Microsatellite DNA polymorphism analysis of clones of Vitis vinifera ‘Sangiovese’. Sci Hortic 65:163–169CrossRefGoogle Scholar
  51. Vosman B, Cooke R, Ganal M, Peeters R, Isaac P, Bredemeijer G (2001) Standardization and application of microsatellite markers for variety identification in tomato and wheat. Acta Hortic 546:307–316Google Scholar
  52. Ye GN, Soylemezoglu G, Weeden NF, Lamboy WF, Pool RM, Reisch BI (1998) Analysis of the relationship between grapevine cultivars, sports and clones via DNA fingerprinting. Vitis 37:33–38Google Scholar
  53. Zohary D, Hopf M (2000). The domestication of the plants in the old world: the origin and spread of cultivated plants in West Asia, Europe and Nile Valley, 3rd edn. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • P. This
    • 1
  • A. Jung
    • 2
  • P. Boccacci
    • 3
  • J. Borrego
    • 4
  • R. Botta
    • 3
  • L. Costantini
    • 5
  • M. Crespan
    • 6
  • G. S. Dangl
    • 7
  • C. Eisenheld
    • 8
  • F. Ferreira-Monteiro
    • 9
  • S. Grando
    • 5
  • J. Ibáñez
    • 4
  • T. Lacombe
    • 1
  • V. Laucou
    • 1
  • R. Magalhães
    • 10
  • C. P. Meredith
    • 7
  • N. Milani
    • 6
  • E. Peterlunger
    • 11
  • F. Regner
    • 8
  • L. Zulini
    • 11
  • E. Maul
    • 2
  1. 1.Laboratory of Grape Genetics UMR Diversité et Génomes des Plantes Cultivées (DGPC), Institut National de la Recherche Agronomique (INRA)MontpellierFrance
  2. 2.Federal Centre of Breeding Research on Cultivated PlantsInstitute for Grapevine Breeding GeilweilerhofSiebeldingenGermany
  3. 3.Centro di Studio per il Miglioramento Genetico e la Biologia della Vite–CNR, Dipartimento di Colture ArboreeUniversità degli Studi di TorinoGrugliascoItaly
  4. 4.Instituto Madrileño de Investigación Agraria y AlimentariaFinca “El Encín”Alcalá de HenaresSpain
  5. 5.Laboratory of Molecular GeneticsIstituto Agrario S. Michele all’ AdigeTrentoItaly
  6. 6.Sezione Ampelografia e Miglioramento GeneticoIstituto Sperimentale per la ViticolturaSusegana (Treviso)Italy
  7. 7.Department of Viticulture and EnologyUniversity of CaliforniaDavisUSA
  8. 8.Department for Grapevine BreedingHBLA u. BA KlosterneuburgRehgraben 2Austria
  9. 9.Instituto Portugues de Viticultura e Enologia (IPVE)MaiaPortugal
  10. 10.Instituto de Ciencias Biomedicas de Abel Salazar (ICBAS)Universidade do PortoPortoPortugal
  11. 11.Department of Crop Production and Agricultural TechnologyUniversity of UdineUdineItaly

Personalised recommendations