Theoretical and Applied Genetics

, Volume 109, Issue 7, pp 1426–1433 | Cite as

Identification and mapping of AFLP markers linked to peanut (Arachis hypogaea L.) resistance to the aphid vector of groundnut rosette disease

  • L. HerselmanEmail author
  • R. Thwaites
  • F. M. Kimmins
  • B. Courtois
  • P. J. A. van der Merwe
  • S. E. Seal
Original Paper


Groundnut rosette disease is the most destructive viral disease of peanut in Africa and can cause serious yield losses under favourable conditions. The development of disease-resistant cultivars is the most effective control strategy. Resistance to the aphid vector, Aphis craccivora, was identified in the breeding line ICG 12991 and is controlled by a single recessive gene. Bulked segregant analysis (BSA) and amplified fragment length polymorphism (AFLP) analysis were employed to identify DNA markers linked to aphid resistance and for the development of a partial genetic linkage map. A F2:3 population was developed from a cross using the aphid-resistant parent ICG 12991. Genotyping was carried out in the F2 generation and phenotyping in the F3 generation. Results were used to assign individual F2 lines as homozygous-resistant, homozygous-susceptible or segregating. A total of 308 AFLP (20 EcoRI+3/MseI+3, 144 MluI+3/MseI+3 and 144 PstI+3/MseI+3) primer combinations were used to identify markers associated with aphid resistance in the F2:3 population. Twenty putative markers were identified, of which 12 mapped to five linkage groups covering a map distance of 139.4 cM. A single recessive gene was mapped on linkage group 1, 3.9 cM from a marker originating from the susceptible parent, that explained 76.1% of the phenotypic variation for aphid resistance. This study represents the first report on the identification of molecular markers closely linked to aphid resistance to groundnut rosette disease and the construction of the first partial genetic linkage map for cultivated peanut.


Linkage Group Amplify Fragment Length Polymorphism Prime Combination Amplify Fragment Length Polymorphism Marker Bulk Segregant Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This publication is an output from a research project funded by the Department for International Development of the United Kingdom. However, the Department for International Development can accept no responsibility for any information provided or views expressed (DFID project code R7445, Crop Protection Programme).


  1. Batley J, Mogg R, Edwards D, O’Sullivan H, Edwards KJ (2003) A high-throughput SNuPE assay for genotyping SNPs in the flanking regions of Zea mays sequence tagged simple sequence repeats. Mol Breed 11:111–120CrossRefGoogle Scholar
  2. Bock K, Murant A, Rajeshwari R (1990) The nature of the resistance in groundnut to rosette disease. Ann Appl Biol 117:379–384Google Scholar
  3. Burow MD, Simpson CE, Paterson AH, Starr JL (1996) Identification of peanut (Arachis hypogaea L.) RAPD markers diagnostic of root-knot nematode (Meloidogyne arenaria (Neal) Chitwood) resistance. Mol Breed 2:369–379Google Scholar
  4. Burow MD, Simpson CE, Starr JL, Paterson AH (1999) Generation of a molecular map of the cultivated peanut, Arachis hypogaeaL. In: Plant Anim Genome VII Conf. San Diego, p 235Google Scholar
  5. Casper R, Meyer S, Lesemann D-E, Reddy DVR, Rajeshwari R, Misari SM, Subbarayudu SS (1983) Detection of a luteovirus in groundnut rosette diseased groundnuts (Arachis hypogaea) by enzyme-linked immunosorbent assay and immunoelectron microscopy. Phytopathol Z 108:12–17Google Scholar
  6. Cherry JP (1977) Potential sources of peanut seed proteins and oil in the genus Arachis. J Agric Food Chem 25:186–193Google Scholar
  7. Chiyembekeza AJ, Subrahmanyam P, Hildebrand GL (1997) Identification and farm evaluation of rosette-resistant groundnut genotypes in Malawi. In: Reddy DVR, Delfosse P, Lenne’ JM, Subrahmanyam P (eds) Groundnut virus diseases in Africa: summary and recommendations. Sixth meeting of the international working group, Agricultural Research Council, Plant Protection Research Institute, Pretoria, South Africa. International Crops Research Institute for the Semi-Arid Tropics, Andhra Pradesh, India and Belgian Administration for Development Co-operation, Belgium, pp 20–21Google Scholar
  8. Coffelt TA, Hammons RO (1973) Influence of sizing peanut seed on two phenotypic ratios. J Hered 64:39–42Google Scholar
  9. de Berchoux C (1960) La rosette de l’arachide en Haute-Volta. Comportement des lignées résistantes. Oléagineux 15:229–233Google Scholar
  10. Ferguson ME, Burow MD, Schulze SR, Bramel PJ, Paterson AH, Kresovich S, Mitchell S (2004) Microsatellite identification and characterization in peanut (A. hypogaea L.) Theor Appl Genet 108:1064–1070CrossRefPubMedGoogle Scholar
  11. Garcia GM, Stalker HT, Shroeder E, Kochert GA (1996) Identification of RAPD, SCAR and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenassi to A. hypogaea. Genome 39:836–845PubMedGoogle Scholar
  12. Grieshammer U, Wynne JC (1990) Isozyme variability in mature seeds of U.S. peanut cultivars and collections. Peanut Sci 18:72–75Google Scholar
  13. Haley SD, Afanador L, Kelly JD (1994) Selection for monogenic pest resistance traits with coupling- and repulsion-phase RAPD markers. Crop Sci 34:1061–1066Google Scholar
  14. Halward TM, Stalker HT, LaRue EA, Kochert G (1991) Genetic variation detectable with molecular markers among unadapted germplasm resources of cultivated peanut and related wild species. Genome 34:1013–1020Google Scholar
  15. Halward T, Stalker HT, Kochert G (1994) RFLP map of peanut. In: Phillips RL, Vasil IK (eds) DNA-based markers in plants. Kluwer, Dordrecht, pp 246–260Google Scholar
  16. Hayashi K, Hashimoto N, Diagen M, Ashikawa I (2004) Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus. Theor Appl Genet 108:1212–1220PubMedGoogle Scholar
  17. He G, Prakash CS (1997) Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.). Euphytica 97:143–149CrossRefGoogle Scholar
  18. Herselman L (2003) Genetic variation among Southern African cultivated peanut (Arachis hypogaea L.) genotypes as revealed by AFLP analysis. Euphytica 133:319–327CrossRefGoogle Scholar
  19. Hopkins MS, Casa AM, Wang T, Mitchell SE, Dean RE, Kochert GD, Kresovich S (1999) Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci 39:1243–1247Google Scholar
  20. Hull R, Adams AN (1968) Groundnut disease and its assistor virus. Ann Appl Biol 62:139–145Google Scholar
  21. ICRISAT (1982) Annual report. Patancheru, IndiaGoogle Scholar
  22. Isleib TG, Wynne JC (1992) Use of plant introductions in peanut improvement. In: Shands HL, Weisner LE (eds) Use of plant introductions in cultivar development, part 2. Crop Science Society of America, Madison, pp 75–116Google Scholar
  23. Kochert G, Halward T, Branch WD, Simpson CE (1991) RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet 81:565–570Google Scholar
  24. Lacks GD, Stalker HT (1993) Isozyme analysis of Arachis species and interspecific hybrids. Peanut Sci 20:76–81Google Scholar
  25. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedGoogle Scholar
  26. Lincoln S, Daly MJ, Lander E (1992) Constructing genetic linkage maps with mapmaker/exp 3.0. Whitehead Institute technical report, 3rd edn. Cambridge, Mass.Google Scholar
  27. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulk segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:745–749PubMedGoogle Scholar
  28. Minja EM, van der Merwe PJA, Kimmins FM, Subrahmanyam P (1999) Screening groundnut breeding lines for resistance to aphids, Aphid craccivora Koch. Int Arachis Newsl 19:21–23Google Scholar
  29. Murant AF, Kumar IK (1990) Different variants of the satellite RNA of groundnut rosette virus are responsible for the chlorotic and green forms of groundnut rosette disease. Ann Appl Biol 117:85–92Google Scholar
  30. Murant AF, Rajeshwari R, Robinson DJ, Raschke JH (1988) A satellite RNA of groundnut rosette virus that is largely responsible for symptoms of groundnut rosette disease. J Gen Virol 69:1479–1486Google Scholar
  31. Murthy TGK, Tiwari SP, Reddy PS (1988) A linkage group for genes governing pod characters in peanut. Euphytica 39:43–46Google Scholar
  32. Naidu RA, Kimmins FM, Deom CM, Subrahmanyam P, Chiyembekeza AJ, van der Merwe PJA (1999) Groundnut rosette. A virus disease affecting groundnut production in sub-Saharan Africa. Plant Dis 83:700–709Google Scholar
  33. Padgham DE, Kimmins FM, Ranga Rao GV (1990) Resistance in groundnut (Arachis hypogaea L.) to Aphis craccivora (Koch). Ann Appl Biol 117:285–294Google Scholar
  34. Patel JS, John CM, Seshadri CR (1936) The inheritance of characters in the groundnut. Proc Indian Acad Sci 3:214–233Google Scholar
  35. Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726CrossRefPubMedGoogle Scholar
  36. Reddy DVR, Murant AF, Duncan GH, Ansa OA, Demski JW, Kuhn CW (1985) Viruses associated with chlorotic rosette and green rosette disease in groundnut in Nigeria. Ann Appl Biol 107:57–64Google Scholar
  37. Saghai Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018PubMedGoogle Scholar
  38. Sauger L, Catherinet M (1954a) La rosette chlorotique de l’arachide et les lignées selectionnées. Agron Trop 9:28–36Google Scholar
  39. Sauger L, Catherinet M (1954b) Nouvelles observations sur la rosette chlorotique de l’arachide et les lignées selectionnées. Bull Agron Ministere Fr Outremer 11:204–216Google Scholar
  40. Savage GP, Keenan JI (1994) The composition and nutritive value of groundnut kernels. In: Smartt J (ed) The groundnut crop: a scientific basis for improvement. Chapman and Hall, London, pp 173–213Google Scholar
  41. Smartt J (1994) The groundnut farming systems and the rural economy—a global view. In: Smartt J (ed) The groundnut crop: a scientific basis for improvement. Chapman and Hall, London, pp 664–699Google Scholar
  42. Stalker HT (1991) A morphological appraisal of wild species in section Arachis of peanuts. Peanut Sci 17:117–122Google Scholar
  43. Stalker HT, Mozingo LG (2001) Molecular markers of Arachis and marker-assisted selection. Peanut Sci 28:117–123Google Scholar
  44. Storey HH, Ryland AK (1955) Transmission of groundnut rosette virus. Ann Appl Biol 43:423–432Google Scholar
  45. Subramanian V, Gurtu S, Nageswara Rae RC, Nigam SN (2000) Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome 43:656–660CrossRefPubMedGoogle Scholar
  46. Van der Merwe PJA (2001) Project groundnut rosette disease management. Progress report: July 2000 to June 2001. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in partnership with Natural Resources Institute (NRI) and Serere Agricultural and Animal Research Institute (SAARI) funded by Department For International Development (DFID)Google Scholar
  47. van der Merwe PJA, Subrahmanyan P, Kimmins FM, Willekens J (2001) Mechanisms of resistance to groundnut rosette. Int Arachis Newsl 21:43–46Google Scholar
  48. Vos P, Hogers R, Bleeker M, Reijans M, Van De Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 21:4407–4414Google Scholar
  49. Vuylsteke M, Mank R, Antonise R, Bastiaans E, Senior ML, Stuber CW, Melchinger AE, Lübberstedt T, Xia XC, Stam P, Zabeau M, Kuiper M (1999) Two high-density AFLP linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor Appl Genet 99:921–935CrossRefGoogle Scholar
  50. Yayock JY, Rossel HW, Harkness C (1976) A review of the 1975 groundnut rosette epidemic in Nigeria. In: Institute of Agricultural Research (ed) Samaru Conf Paper No.9. Institute of Agricultural Research, SamaruGoogle Scholar
  51. Young WP, Schupp JM, Keim P (1999) DNA methylation and AFLP marker distribution in the soybean genome. Theor Appl Genet 99:785–792CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • L. Herselman
    • 1
    • 5
    Email author
  • R. Thwaites
    • 2
    • 6
  • F. M. Kimmins
    • 2
    • 7
  • B. Courtois
    • 3
  • P. J. A. van der Merwe
    • 4
    • 8
  • S. E. Seal
    • 2
  1. 1.Agricultural Research Council-Grain Crops InstitutePotchefstroomSouth Africa
  2. 2.Natural Resources InstituteUniversity of Greenwich at MedwayChatham MaritimeUK
  3. 3.UMR 1096CIRAD-BiotropMontpellier Cedex 5France
  4. 4.Chitedze Agricultural Research StationICRISAT-MalawiLilongweMalawi
  5. 5.Department of Plant SciencesUniversity of the Free StateBloemfonteinSouth Africa
  6. 6.Department of Agricultural SciencesImperial College LondonAshfordUK
  7. 7.NR InternationalAylesfordUK
  8. 8.Agricultural Research Council-Grain Crops InstitutePotchefstroomSouth Africa

Personalised recommendations