Theoretical and Applied Genetics

, Volume 109, Issue 5, pp 986–995 | Cite as

High-density AFLP map of nonbrittle rachis 1 (btr1) and 2 (btr2) genes in barley (Hordeum vulgare L.)

Original Paper


Wild relatives of barley disperse their seeds at maturity by means of their brittle rachis. In cultivated barley, brittleness of the rachis was lost during domestication. Nonbrittle rachis of occidental barley lines is controlled by a single gene (btr1) on chromosome 3H. However, nonbrittle rachis of oriental barley lines is controlled by a major gene (btr2) on chromosome 3H and two quantitative trait loci on chromosomes 5HL and 7H. This result suggests multiple mutations of the genes involved in the formation of brittle rachis in oriental lines. The btr1 and btr2 loci did not recombine in the mapping population analyzed. This result agrees with the theory of tight linkage between the two loci. A high-density amplified fragment-length polymorphism (AFLP) map of the btr1/btr2 region was constructed, providing an average density of 0.08 cM/locus. A phylogenetic tree based on the AFLPs showed clear separation of occidental and oriental barley lines. Thus, barley consists of at least two lineages as far as revealed by molecular markers linked to nonbrittle rachis genes.

Supplementary material

122_2004_1710_ESM_legends.pdf (17 kb)
Legends for supplementary figures (pdf 17 KB)
122_2004_1710_ESM_fig1.pdf (75 kb)
sFigure 1 (pdf 77 KB)
122_2004_1710_ESM_fig2.pdf (6 kb)
sFigure 2 (pdf 6 KB)
122_2004_1710_ESM_fig3.pdf (8 kb)
sFigure 3 (pdf 8 KB)


  1. Åberg E (1938) Hordeum agriocrithon nova sp., a wild six-rowed barley. Ann Agric Coll Sweden 6:159–216Google Scholar
  2. Badr A, Müller K, Schäfer-Pregl R, El Rabey H, Effgen S, Ibrahim H, Pozzi C, Rohde W, Salamini F (2000) On the origin and domestication history of barley (Hordeum vulgare). Mol Biol Evol 17:499–510PubMedGoogle Scholar
  3. Basten C, Weir B, Zeng Z-B (2000) QTL Cartographer 1.14. A reference manual and tutorial for QTL mapping. Department of Statistics, North Carolina State University, RaleighGoogle Scholar
  4. Bothmer Rv (1979) Revision of the Asiatic taxa of Hordeum sect. Stenostachys. Bot Tidsskr 74:117–147Google Scholar
  5. Bothmer Rv, Jacobsen N (1985) Origin, taxonomy, and related species. In: Rasmusson D (ed) Barley—ASA agronomy monograph, vol 26. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 19–56Google Scholar
  6. Bothmer Rv, Jacobsen N, Baden C, Jørgensen R, Linde-Laursen I (1995) An ecogeographical study of the genus Hordeum, 2nd edn. Systematic and ecogeographic studies on crop genepools. 7. International Plant Genetic Resources Institute, RomeGoogle Scholar
  7. Cai H-W, Morishima H (2000) Genomic regions affecting seed shattering and seed dormancy in rice. Theor Appl Genet 100:840–846CrossRefGoogle Scholar
  8. Castiglioni P, Pozzi C, Heun M, Terzi V, Müller K, Rohde W, Salamini F (1998) An AFLP-based procedure for the efficient mapping of mutations and DNA probes in barley. Genetics 149:2039–2056PubMedGoogle Scholar
  9. Eiguchi M, Sano Y (1990) A gene complex responsible for seed shattering and panicle spreading found in common wild rices. Rice Genet Newsl 7:105–107Google Scholar
  10. Elliott W, Perlinger G (1977) Inheritance of shattering in wild rice. Crop Sci 17:851–853Google Scholar
  11. Franckowiak J, Lundqvist U, Konishi T (1997) New and revised names for barley genes. Barley Genet Newsl 26:4–8Google Scholar
  12. Frederiksen S, Petersen G (1998) A taxonomic revision of Secale (Triticeae, Poaceae). Nordic J Bot 18:399–420Google Scholar
  13. Freisleben R (1943) Ein neuer Fund von Hodeum agriocrithon Åberg. Zuchter 15:25–29Google Scholar
  14. Fukuta Y (1995) Genetic analysis of shattering-resistance mutant lines induced from an indica rice variety, ‘Nan-jing 11.4’. RFLP mapping of a mutant gene in ‘Hokuriku 143’ (SR-5). Breed Sci 45 [Suppl 1]:89Google Scholar
  15. Fukuta Y, Harushima Y, Yano M (1996) Using quantitative trait locus analysis for studying genetic regulation of shattering. Rice Genet 3:657–662Google Scholar
  16. Johnson I, Åberg E (1943) The inheritance of brittle rachis in barley. J Am Soc Agron 35:101–106Google Scholar
  17. Kandemir N, Kudrna D, Ullrich S, Kleinhofs A (2000) Molecular marker-assisted genetic analysis of head shattering in six-rowed barley. Theor Appl Genet 101:203–210CrossRefGoogle Scholar
  18. Kennard W, Phillips R, Porter R (2002) Genetic dissection of seed shattering, agronomic, and color traits in American wild rice (Zizania palustris var. interior L.) with a comparative map. Theor Appl Genet 105:1075–1086CrossRefPubMedGoogle Scholar
  19. Kimber G, Feldman M (1987) Wild wheat. An introduction. College of Agriculture, University of Missouri, ColumbiaGoogle Scholar
  20. Komatsuda T, Mano Y (2002) Molecular mapping of the intermedium spike-c (int-c) and non-brittle rachis 1 (btr1) loci in barley (Hordeum vulgare L.). Theor Appl Genet 105:85–90CrossRefPubMedGoogle Scholar
  21. Komatsuda T, Annaka T, Oka S (1993) Genetic mapping of a quantitative trait locus (QTL) that enhances the shoot differentiation rate in Hordeum vulgare L. Theor Appl Genet 86:713–720Google Scholar
  22. Konishi T (2001) Genetic diversity in Hordeum agriocrithon E. Aberg, six-rowed barley with brittle rachis, from Tibet. Genet Resource Crop Evol 48:27–34CrossRefGoogle Scholar
  23. Lander E, Green P, Abrahamson J, Barlow A, Daly M, Lincoln S, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedGoogle Scholar
  24. Lincoln S, Daly M, Lander E (1993) Constructing genetic linkage maps with MAPMAKER/Exp 3.0. Whitehead Institute for Biomedical Research Technical Report, 3rd edn. CambridgeGoogle Scholar
  25. Linde-Laursen I, Heslop-Harrison J, Shepherd K, Taketa S (1997) The barley genome and its relationship with the wheat genomes. A survey with an internationally agreed recommendation for barley chromosome nomenclature. Hereditas 126:1–16CrossRefGoogle Scholar
  26. Lundqvist U, Franckowiak JD, Konishi T (1997) New and revised descriptions of barley genes. Barley Genet Newsl 26:22–516Google Scholar
  27. Mano Y, Komatsuda T (2002) Identification of QTLs controlling tissue-culture traits in barley (Hordeum vulgare L.). Theor Appl Genet 105:708–715CrossRefPubMedGoogle Scholar
  28. Mano Y, Kawasaki S, Takaiwa F, Komatsuda T (2001) Construction of a genetic map of barley (Hordeum vulgare L.) cross ‘Azumamugi’ × ‘Kanto Nakate Gold’ using a simple and efficient amplified fragment-length polymorphism system. Genome 44:284–292CrossRefPubMedGoogle Scholar
  29. Molina-Cano J, Gómèz-Campo C, Conde J (1982) Hordeum spontaneum C. Koch as a weed of barley fields in Morocco. Z Pflanzenzuecht 88:161–167Google Scholar
  30. Molina-Cano J, Moralejo M, Igartua E, Romagosa I (1999) Further evidence supporting Morocco as a centre of origin of barley. Theor Appl Genet 98:913–918CrossRefGoogle Scholar
  31. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  32. Oba S, Kikuchi F, Maruyama K (1990) Genetic analysis of semidwarfness and grain shattering of Chinese rice variety ‘Ai-Jio-Nan-Te’. Jpn J Breed 40:13–20Google Scholar
  33. Paterson A, Lin Y-R, Li Z, Schertz K, Doebley J, Pinson S, Liu S-C, Stansel J, Irvine J (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718Google Scholar
  34. Sameri M, Komatsuda T (2004) Identification of quantitative trait loci controlling morphological and physiological traits, which are characteristic between Oriental and Occidental barley cultivars (Hordeum vulgare L.). Spunar I, Janicoba J (eds) Proceedings of 9th International Barley Genetics Symposium, Brno, Czech Republic, 20–26 June 2004, pp 231–236Google Scholar
  35. Sanchez P, Kurakazu T, Hirata C, Sobrizal A, Yoshimura A (2002) Mapping of seed shattering genes using introgression lines from wild species of rice. Breed Res 4:68Google Scholar
  36. Schiemann E (1921) Genetische Studien an Gerste. Z Indukt Abstammungs Vererbungsl 26:109–143Google Scholar
  37. Slageren M van (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agriculture University, WageningenGoogle Scholar
  38. Swofford D (1998) PAUP*. Phylogenetic analysis using parsimony (*and other methods), ver 4. Sinauer, Sunderland, Mass.Google Scholar
  39. Takahashi R (1942) Studies on the classification and the geographical distribution of the Japanese barley varieties. I. Significance of the bimodal curve of the coleoptile length. Ber Ohara Inst Landwirtsch Biol Okayama Univ 9:71–90Google Scholar
  40. Takahashi R (1951) Studies on the classification and the geographical distribution of the Japanese barley varieties. II. Correlative inheritance of some quantitative characters with the ear types. Ber Ohara Inst Landwirtsch Biol Okayama Univ 9:383–398Google Scholar
  41. Takahashi R (1955) The origin and evolution of cultivated barley. In: Demerec M (ed) Advances in Genetics, vol 7. Academic, New York, pp 227–266Google Scholar
  42. Takahashi R (1963) Further studies on the phylogenetic differentiation of cultivated barley. Barley Genet 1:19–26Google Scholar
  43. Takahashi R, Hayashi J (1959) Linkage study of the genes for brittle rachises in barley (preliminary) (in Japanese). Nogaku Kenkyu 46:113–119Google Scholar
  44. Takahashi R, Hayashi J (1964) Linkage study of two complementary genes for brittle rachis in barley. Ber Ohara Inst Landwirtsch Biol Okayama Univ 12:99–105Google Scholar
  45. Takahashi R, Yamamoto J (1949) Studies on the classification and the geographic distribution of barley varieties. 8. Nogaku Kenkyu 38:41–43Google Scholar
  46. Takahashi R, Yamamoto J (1951) Studies on the classification and the geographic distribution of barley varieties. 15. Nogaku Kenkyu 39:81–90Google Scholar
  47. Takahashi R, Hayashi J, Moriya I (1979) Geographical differentiation of the genes for compact head barley. Barley Genet Newsl 9:99–101Google Scholar
  48. Takahashi R, Yasuda S, Hayashi J, Fukuyama T, Moriya I, Konishi T (1983) Catalogue of barley germplasm preserved in Okayama University. Okayama University, KurashikiGoogle Scholar
  49. Tanno K (1999) Molecular phylogeny in the genus Hordeum. PhD Thesis, University of TsukubaGoogle Scholar
  50. Tanno K, Takaiwa F, Oka S, Komatsuda T (1999) A nucleotide sequence linked to the vrs1 locus for studies of differentiation in cultivated barley (Hordeum vulgare L.). Hereditas 130:77–82CrossRefPubMedGoogle Scholar
  51. Tanno K, Taketa S, Takeda K, Komatsuda T (2002) A DNA marker closely linked to the vrs1 locus (row-type gene) indicates multiple origins of six-rowed cultivated barley (Hordeum vulgare L.). Theor Appl Genet 104:54–60CrossRefPubMedGoogle Scholar
  52. Ubisch Gv (1915) Analyse eines Falles von Bastardatavismus und Faktorenkoppelung bei Gerste. Z Indukt Abstammungs Vererbungsl 14:226–237Google Scholar
  53. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedGoogle Scholar
  54. Watanabe N, Ikebata N (2000) The effects of homoeologous group 3 chromosomes on grain colour dependent seed dormancy and brittle rachis in tetraploid wheat. Euphytica 115:215–220CrossRefGoogle Scholar
  55. Zohary D, Hopf M (2000) Domestication of plants in the old world. Oxford, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.National Institute of Agrobiological SciencesTsukubaJapan

Personalised recommendations