Theoretical and Applied Genetics

, Volume 108, Issue 8, pp 1635–1642

The nematode-resistance gene, Mi-1, is associated with an inverted chromosomal segment in susceptible compared to resistant tomato

  • S. Seah
  • J. Yaghoobi
  • M. Rossi
  • C. A. Gleason
  • V. M. Williamson
Original Paper

Abstract

The gene Mi-1 confers effective resistance in tomato (Lycopersicon esculentum) against root-knot nematodes and some isolates of potato aphid. This locus was introgressed from L. peruvianum into the corresponding region on chromosome 6 in tomato. In nematode-resistant tomato, Mi-1 and six homologs are grouped into two clusters separated by 300 kb. Analysis of BAC clones revealed that the Mi-1 locus from susceptible tomato carried the same number and distribution of Mi-1 homologs, as did the resistant locus. Molecular markers flanking the resistant and susceptible loci were in the same relative orientation, but markers between the two clusters were in an inverse orientation. The simplest explanation for these observations is that there is an inversion between the two clusters of homologs when comparing the Mi-1 loci from L. esculentum and L. peruvianum. Such an inversion may explain previous observations of severe recombination suppression in the region. Two Mi-1 homologs identified from the BAC library derived from susceptible tomato are not linked to the chromosome 6 locus, but map to chromosome 5 in regions known to contain resistance gene loci in other solanaceous species.

References

  1. Ammiraju JSS, Veremis JC, Huang X, Roberts PA, Kaloshian I (2003) The heat-stable, root-knot nematode-resistance gene Mi-9 from Lycopersicon peruvianum is localized on the short arm of chromosome 6. Theor Appl Genet 106:478–484PubMedGoogle Scholar
  2. Bakker E, Butterbach P, Rouppe van der Voort J, van der Vossen E, van Vliet J, Bakker J, Goverse A (2003) Genetic and physical mapping of homologues of the virus resistance gene Rx1 and the cyst nematode resistance gene Gpa2 in potato. Theor Appl Genet 106:1524–1531PubMedGoogle Scholar
  3. Baudry E, Kerdelhue C, Innan H, Stephan W (2001) Species and recombination effects on DNA variability in the tomato genus. Genetics 158:1725–1735PubMedGoogle Scholar
  4. Bendahmane A, Kanyuka K, Baulcombe DC (1999) The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11:781–791PubMedGoogle Scholar
  5. Bonnema G, Hontelez J, Verkerk R, Zhang YQ, van Daelen R, et al (1996) An improved method of partially digesting plant megabase DNA suitable for YAC cloning: application to the construction of a 5.5 genome equivalent YAC library of tomato. Plant J 9:125–133CrossRefPubMedGoogle Scholar
  6. Brommonschenkel SH, Frary A, Frary A, Tanksley SD (2000) The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol Plant Microbe Int 13:1130–1138Google Scholar
  7. Cannon SB, Zhu H, Baumgarten AM, Spangler R, May G, et al (2002) Diversity, distribution, and ancient taxonomic relationships within the TIR and non-TIR NBS-LRR resistance gene subfamilies. J Mol Evol 54:548–562CrossRefPubMedGoogle Scholar
  8. Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833PubMedGoogle Scholar
  9. De Jong W, Forsyth A, Leister D, Gebhardt C, Baulcombe DC (1997) A potato hypersensitive resistance gene against potato virus X maps to a resistance gene cluster on chromosome 5. Theor Appl Genet 95:246–252CrossRefGoogle Scholar
  10. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21Google Scholar
  11. Ernst K, Kumar A, Krisleit D, Kloos DU, Phillips MS, et al (2002) Broad-spectrum potato cyst nematode-resistance gene (Hero) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region. Plant J 31:127–136CrossRefPubMedGoogle Scholar
  12. Eshed Y. Zamir D (1994) A genomic library of Lycopersicon pennellii in L. esculentum: A tool for fine mapping of genes. Euphytica 79:175–179Google Scholar
  13. Ganal MW, Tanksley SD (1996) Recombination around the Tm2a and Mi resistance genes in different crosses of Lycopersicon peruvianum. Theor Appl Genet 92:101–108CrossRefGoogle Scholar
  14. Grube RC, Radwanski ER, Jahn M (2000) Comparative genetics of disease resistance within Solanaceae. Genetics 155:873–887PubMedGoogle Scholar
  15. Ho JY, Weide R, Ma HM, van Wordragen MF, Lambert KN, et al (1992) The root-knot nematode resistance gene (Mi) in tomato: construction of a molecular linkage map and identification of dominant cDNA markers in resistant genotypes. Plant J 2:971–982PubMedGoogle Scholar
  16. Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids from transformation of Escherichia coli. Gene 57:267–272PubMedGoogle Scholar
  17. Hulbert SH, Webb CA, Smith S, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312PubMedGoogle Scholar
  18. Kaloshian I, Yaghoobi J, Liharska T, Hontelez J, Hanson D, et al (1998) Genetic and physical localization of the root-knot nematode-resistance locus Mi in tomato. Mol Gen Genet 257:376–385PubMedGoogle Scholar
  19. Liu YG, Huang N (1998) Efficient amplification of insert end sequences from bacterial artificial chromosome clones by thermal asymmetric interlaced PCR. Plant Mol Biol Rep 16:175–181CrossRefGoogle Scholar
  20. Messeguer R, Ganal M, de Vicente MC, Young ND, Bolkan H, et al (1991) High resolution RFLP map around the root knot nematode-resistance gene (Mi) in tomato. Theor Appl Genet 82:529–536Google Scholar
  21. Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8:1113–1130PubMedGoogle Scholar
  22. Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448Google Scholar
  23. Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, et al (1998) The root knot nematode-resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1319PubMedGoogle Scholar
  24. Nombela G, Williamson VM, Muniz M (2003) The root-knot nematode-resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol Plant Microbe Int 16:645–649Google Scholar
  25. Ori N, Eshed Y, Paran I, Presting G, Aviv D, Tanksley S, Zamir D, Fluhr R (1997) The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. Plant Cell 9:521–532PubMedGoogle Scholar
  26. Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, et al (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95:9750–9754PubMedGoogle Scholar
  27. Salmeron JM, Oldroyd GED, Tommens CMT, Scofield SR, Kim HS, et al (1996) Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86:123–133PubMedGoogle Scholar
  28. Schmidt R, Cnops G, Bancroft I, Dean C (1992) Construction of an overlapping YAC library of the Arabidopsis thaliana genome. Aust J Plant Physiol 19:341–351Google Scholar
  29. Seah S, Sivasithamparam K, Karakousis A, Lagudah ES (1998) Cloning and characterisation of a family of disease-resistance gene analogs from wheat and barley. Theor Appl Genet 97:937–945CrossRefGoogle Scholar
  30. Simons G, Groenendijk J, Wijbrandi J, Reijans M, Groenen J, et al (1998) Dissection of the Fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy. Plant Cell 10:1055–1068Google Scholar
  31. Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, et al (1992) High-density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160PubMedGoogle Scholar
  32. Vos P, Simons G, Jesse T, Wijbrandi J, Heinen L, et al (1998) The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nat Biotech 16:1365–1369CrossRefGoogle Scholar
  33. Vossen EAG van der, van der Voort JN, Kanyuka K, Bendahmane A, Sandbrink H, et al (2000) Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode. Plant J 23: 567–576PubMedGoogle Scholar
  34. Williamsom VM, Ho JY, Wu FF, Miller N, Kaloshian I (1994) A PCR-based marker tightly linked to the nematode resistance gene, Mi, in tomato. Theor Appl Genet 87:757–763Google Scholar
  35. Williamson VM, Hwang CF, Truesdell G, Bhakta AV, Fort KP (2000) The nematode resistance gene, Mi. In: de Wit PJG, Bisseling T, Stiekema WJ (eds) Biology of Plant Microbe Interactions, vol 2. International Society for Molecular Plant-Microbe Interactions, St. Paul, Minn., USA, pp 88–92Google Scholar
  36. Wordragen MF van, Weide R, Liharska T, van der Steen A, Koornneef M, et al (1994) Genetic and molecular organization of the short arm and pericentromeric region of tomato chromosome 6. Euphytica 79:169–174Google Scholar
  37. Zhong XB, Bodeau J, Fransz, PF, Williamson VM, van Kammen A, et al (1999) FISH to meiotic pachytene chromosomes of tomato locates the root knot nematode resistance gene Mi-1 and the acid phosphatase gene Aps-1 near the junction of euchromatin and pericentromeric heterochromatin of chromosome arms 6S and 6L, respectively. Theor Appl Genet 98:365–370Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • S. Seah
    • 1
  • J. Yaghoobi
    • 1
  • M. Rossi
    • 1
    • 2
  • C. A. Gleason
    • 1
    • 3
  • V. M. Williamson
    • 1
  1. 1.Department of NematologyUniversity of CaliforniaDavisUSA
  2. 2.Departamento de BotanicaUniversidade de Sao PauloSao PauloBrazil
  3. 3.Department of Disease and Stress BiologyJohn Innes CentreNorwichUK

Personalised recommendations