Theoretical and Applied Genetics

, Volume 108, Issue 7, pp 1401–1408 | Cite as

High-resolution genetic mapping of the leaf stripe resistance gene Rdg2a in barley

  • D. Bulgarelli
  • N. C. Collins
  • G. Tacconi
  • E. Dellaglio
  • R. Brueggeman
  • A. Kleinhofs
  • A. M. Stanca
  • G. Valè
Original Paper

Abstract

The dominant gene Rdg2a of barley conferring resistance to the hemi-biotrophic seed-borne pathogen Pyrenophora graminea is located in the distal region of chromosome arm 1 (7H)S. As the first step towards isolating the gene, a high-resolution genetic map of the region was constructed using an F2 population of 1,400 plants (ThibautRdg2a×Mirco). The map included six classes of resistance gene analogues (RGAs) tightly associated with Rdg2a. Rdg2a was delimited to a genetic interval of 0.14 cM between the RGAs ssCH4 and MWG851. Additional markers were generated using the sequence from the corresponding region on rice chromosome 6, allowing delimitation of the Rdg2a syntenic interval in rice to a 115 kbp stretch of sequence. Analysis of the rice sequence failed to reveal any genes with similarity to characterized resistance genes. Therefore, either the rice-barley synteny is disrupted in this region, or Rdg2a encodes a novel type of resistance protein.

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipmann DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedGoogle Scholar
  2. Arru L, Nicks RE, Lindhout P, Valè G, Francia E, Pecchioni N (2002) Genomic regions determining resistance to leaf stripe (Pyrenophora graminea) in barley. Genome 45:460–466PubMedGoogle Scholar
  3. Arru L, Francia E, Pecchioni N (2003a) Isolate-specific QTLs of resistance to leaf stripe (Pyrenophora graminea) in the Steptoe×Morex spring barley cross. Theor Appl Genet 106:668–675PubMedGoogle Scholar
  4. Arru L, Faccini N, Govoni C, Cattivelli L, Pecchioni N, Delogu G, Stanca AM, Valè G (2003b) The PCR-based marker MWG2018 linked to the Rdg2a leaf stripe resistance gene is a useful tool for assessing barley resistance in breeding programs. Crop Sci 43:1036–1042Google Scholar
  5. Ayliffe MA, Collins NC, Ellis JG, Pryor A (2000) The maize rp1rust resistance gene identifies homologues in barley that have been subjected to diversifying selection. Theor Appl Genet 100:1144–1154CrossRefGoogle Scholar
  6. Backes G, Madsen LH, Jaiser H, Stougaard J, Herz M, Mohler V, Jahoor A (2003) Localisation of genes for resistance against Blumeria graminis f. sp. hordei and Puccinia graminis in a cross between a barley cultivar and a wild barley ( Hordeum vulgare ssp. spontaneum) line. Theor Appl Genet 106:353–362PubMedGoogle Scholar
  7. Brueggeman R, Druka A, Kudrna D, Kleinhofs A (2001) Efficient cloning of resistance gene analogs from barley. Barley Genet Newsl 31:24–27Google Scholar
  8. Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A (2002) The barley stem rust-resistance gene Rpg1is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci USA 99:9328–9333CrossRefPubMedGoogle Scholar
  9. Collins N, Park R, Spielmeyer W, Ellis J, Pryor AJ (2001) Resistance gene analogs in barley and their relationship to rust resistance genes. Genome 44:375–381CrossRefPubMedGoogle Scholar
  10. Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833PubMedGoogle Scholar
  11. Delseny M (2003) Towards an accurate sequence of the rice genome. Curr Opin Plant Biol 6:101–105CrossRefPubMedGoogle Scholar
  12. Feinberg AP, Vogelstein B (1983) A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13PubMedGoogle Scholar
  13. Giese H, Holm-Jensen AG, Jensen HP, Jensen J (1993) Localization of the Laevigatum powdery mildew resistance gene to barley chromosome 2 by the use of RFLP markers. Theor Appl Genet 85:897–900Google Scholar
  14. Goff SA, Ricke D, Lan T-H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun W-L, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. Japonica). Science 296:92–100PubMedGoogle Scholar
  15. Graner A, Bauer E, Kellermann A, Kirchner S, Muraya JK, Jahoor A, Wenzel G (1994) Progress of RFLP-map construction in winter barley. Barley Genet Newsl 23:53–59Google Scholar
  16. Hammond-Kosack KE, Parker JE (2003) Deciphering plant-pathogen communication: fresh perspecitives for molecular resistance breeding. Curr Opin Biotech 14:177–193CrossRefPubMedGoogle Scholar
  17. Han F, Kilian A, Chen JP, Kudrna D, Steffenson B, Yamamoto K, Matsumoto T, Sasaki T, Kleinhofs A (1999) Sequence analysis of a rice BAC clone covering the syntenous barley Rpg1 region. Genome 42:1071–1076CrossRefPubMedGoogle Scholar
  18. Huang L, Gill BS (2001) An RGA-like marker detects all known Lr21 leaf rust resistance gene family members in Aegilops tauschii and wheat. Theor Appl Genet 103:1007–1013Google Scholar
  19. Hulbert SC, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utlization. Annu Rev Phytopathol 39:285–312PubMedGoogle Scholar
  20. Kilian A, Kudrna DA, Kleinhofs A, Yano M, Kurata N, Steffenson B, Sasaki T (1995) Rice-barley synteny and its application to saturation mapping of the barley Rpg1 region. Nucleic Acids Res 23:2729–2733PubMedGoogle Scholar
  21. Kilian A, Chen J, Han F, Steffenson B, Kleinhofs A (1997) Towards map-based cloning of the barley stem rust resistance genes Rpg1and Rpg4using rice as an intergenomic cloning vehicle. Plant Mol Biol 35:187–195PubMedGoogle Scholar
  22. Künzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412PubMedGoogle Scholar
  23. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedGoogle Scholar
  24. Leister D, Kurth J, Laurie DA, Yano M, Sasaki T, Devos K, Graner A, Schulze-Lefert P (1998) Rapid re-organization of resistance gene homologs in cereal genomes. Proc Natl Acad Sci USA 95:370–375PubMedGoogle Scholar
  25. Leister D, Kurth J, Laurie DA, Yano M, Sasaki T, Graner A, Schulze-Lefert P (1999) RFLP and physical mapping of resistance gene homologues in rice (O. sativa) and barley (H. vulgare). Theor Appl Genet 98:509–520Google Scholar
  26. Ling HQ, Zhu Y, Keller B (2003) High resolution mapping of the leaf rust disease resistance gene Lr1 in wheat and characterization of BAC clones from the Lr1 locus. Theor Appl Genet 106:875–882PubMedGoogle Scholar
  27. Madsen LH, Collins NC, Rakwalska M, Backes G, Sandal N, Krusell L, Jensen J, Waterman EH, Jahoor A, Ayliffe M, Pryor AJ, Langridge P, Schulze-Lefert P, Stougaard J (2003) Barley disease resistance gene analogs of the NBS-LRR class: identification and mapping. Mol Gen Genomics 269:150–161Google Scholar
  28. Neff MM, Neff JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14:387–392PubMedGoogle Scholar
  29. Pecchioni N, Faccioli P, Toubia-Rahme H, Valè G, Terzi V (1996) Quantitative resistance to barley leaf stripe (Pyrenophora graminea) is dominated by one major locus. Theor Appl Genet 93:97–101CrossRefGoogle Scholar
  30. Porta-Puglia A, Delogu G, Vannacci G (1986) Pyrenophora graminea on winter barley seed: effect on disease incidence and yield losses. J Phytopathol 117:26–33Google Scholar
  31. Rostoks N, Zale JM, Soule J, Brueggeman R, Druka A, Kudrna D, Steffenson B, Kleinhofs A (2002) A barley gene family homologous to the maize rust resistance gene Rp1-D. Theor Appl Genet 104:1298–1306CrossRefGoogle Scholar
  32. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018PubMedGoogle Scholar
  33. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  34. Seah S, Sivasithamparam K, Karakousis A, Lagudah ES (1998) Cloning and characterisation of a family of disease resistance gene analogs from wheat and barley. Theor Appl Genet 97:937–945CrossRefGoogle Scholar
  35. Siebert PD, Chenchik A, Kellogg DE, Lukyanov A, Lukyanov SA (1995) An improved method for walking in uncloned genomic DNA. Nucleic Acids Res 23:1087–1088PubMedGoogle Scholar
  36. Skou JP, Haahr V (1987) Screening for and inheritance of resistance to barley leaf stripe (Drechslera graminea). Risø report 554, Risø National Laboratory, Roskilde, DenmarkGoogle Scholar
  37. Stein N, Herren G, Keller B (2001) A new DNA extraction method for high-throughput marker analysis in a large-genome species such as Triticum aestivum. Plant Breed 120:354–356Google Scholar
  38. Tacconi G., Cattivelli L, Faccini N, Pecchioni N, Stanca AM, Valè G (2001) Identification and mapping of a new leaf stripe resistance gene in barley (Hordeum vulgare L.). Theor Appl Genet 102:1286–1291Google Scholar
  39. The Arabidopsis Genome Initiative (2000) Analysis of the genome of the flowering plant Arabidopsis thaliana. Nature 408:796–815PubMedGoogle Scholar
  40. Thomsen SB, Jensen HP, Jensen J, Skou JP, Jørgensen JH (1997) Localization of a resistance gene and identification of sources of resistance to barley leaf stripe. Plant Breed 116:455–459Google Scholar
  41. Wei F, Gobelman-Werner K, Morroll SM, Kurth J, Mao L, Wing R, Leister D, Schulze-Lefert P, Wise RP (1999) The Mla (Powdery Mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240 kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153:1929–1948PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • D. Bulgarelli
    • 1
  • N. C. Collins
    • 2
    • 4
  • G. Tacconi
    • 1
  • E. Dellaglio
    • 1
  • R. Brueggeman
    • 3
  • A. Kleinhofs
    • 3
  • A. M. Stanca
    • 1
  • G. Valè
    • 1
  1. 1.Istituto sperimentale per la CerealicolturaSezione di Fiorenzuola d’ArdaFiorenzuola d’ArdaItaly
  2. 2.Sainsbury LaboratoryJohn Innes CentreNorwichUK
  3. 3.Department of Crop and Soil SciencesWashington State UniversityPullmanUSA
  4. 4.Australian Centre for Plant Functional GenomicsUniversity of AdelaideGlen OsmondAustralia

Personalised recommendations