Theoretical and Applied Genetics

, Volume 108, Issue 7, pp 1392–1400 | Cite as

One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat

  • L. F. Gao
  • R. L. Jing
  • N. X. Huo
  • Y. Li
  • X. P. Li
  • R. H. Zhou
  • X. P. Chang
  • J. F. Tang
  • Z. Y. Ma
  • J. Z. Jia
Original Paper

Abstract

Four hundred and seventy-eight microsatellite markers derived from expressed sequence tags (EST-SSRs) were screened among three mapping populations (W-7984×Opata 85, WOpop; Lumai×Hanxuan, LHpop; Wenmai×Shanhongmai, WSpop). The number of polymorphic EST-SSR primer pairs found in WOpop, LHpop and WSpop was 92, 58 and 29 respectively. A total of 101 EST-SSR loci amplified from 88 primer sets were distributed over the 20 chromosomes of the reference maps (no markers were located on chromosome 4B). These 101 mapped EST-SSR markers add to the existing 450 microsatellite loci previously mapped in bread wheat. Seventy-four of the 101 loci showed significant similarities to known genes, including 24 genes involved in metabolism, 4 in cellular structures, 9 in stress resistance, 12 in transcription, 2 in development, 2 transporters and 21 storage proteins. Besides gliadin and glutenin, most of the 53 genes with putative functions were mapped for the first time by EST-SSR markers in bread wheat. Sequence alignment of the mapped wheat EST-SSR loci allowed tentative assignment of functionality to the other members of grasses family. Colinearity combined with homology information offers an attractive approach to comparative genomics.

Keywords

Mapping Population Bread Wheat Wheat ESTs Anchor Marker Bread Wheat Genome 

Notes

Acknowledgements

The authors gratefully acknowledge two anonymous referees for their constructive comments and Dr. Leung He (IRRI) for critically reading the manuscript.

References

  1. Baumann K, De Paolis A, Costantino P, Gualberti G (1999) The DNA binding site of the Dof protein NtBBF1 is essential for tissue-specific and auxin-regulated expression of the rolB oncogene in plants. Plant Cell 11:323–334PubMedGoogle Scholar
  2. Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B 274:227–274PubMedGoogle Scholar
  3. Bennetzen JL, Freeling M (1993) Grasses as a single genetic system: genome composition, colinearity and compatibility. Trends Genet 9:259–261PubMedGoogle Scholar
  4. Cardle L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R (2000) Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156:847–854PubMedGoogle Scholar
  5. Chen CY, Wong EI, Vidali L, Estavillo A, Hepler PK, Wu HM, Cheung AY (2002) The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. Plant Cell 14:2175–2190CrossRefPubMedGoogle Scholar
  6. Delaney DE, Nasuda S, Endo TR, Gill BS, Hulbert SH (1995a) Cytologically based physical maps of the group-2 chromosomes of wheat. Theor Appl Genet 91:568–573Google Scholar
  7. Delaney DE, Nasuda S, Endo TR, Gill BS, Hulbert SH (1995b) Cytologically based physical maps of the group-3 chromosomes of wheat. Theor Appl Genet 91:780–782Google Scholar
  8. Devos KM, Atkinson MD, Chinoy CN, Liu C, Gale MD (1992) RFLP-based genetic map of the homoeologous group-3 chromosomes of wheat and rye. Theor Appl Genet 83:931–939Google Scholar
  9. Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974PubMedGoogle Scholar
  10. Gao LF, Tang JF, Li HW, Jia JZ (2003) Analysis of microsatellites in major crops assessed by computational and experimental approaches. Mol Breed 12:245–261CrossRefGoogle Scholar
  11. Gill KS, Gill BS, Endo TR (1993) A chromosome region-specific mapping strategy reveals gene-rich telomeric ends in wheat. Chromosoma 102:374–381Google Scholar
  12. Gualberti G, Papi M, Bellucci L, Ricci I, Bouchez D, Camilleri C, Costantino P, Vittorioso P (2002) Mutations in the Dof zinc finger genes DAG2 and DAG1 influence with opposite effects the germination of Arabidopsis seeds. Plant Cell 14:1253–1263CrossRefPubMedGoogle Scholar
  13. Gupta PK, Balyan HS, Edwards KJ, Isaac P, Korzun V, Röder MS, Gautier MF, Joudrier P. Schlatter AR, Dubcovsky J, De la Pena RC, Khairallah M, Penner G, Hayden MJ, Sharp P, Keller B, Wang RCC, Hardouin JP, Jack P, Leroy P (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422CrossRefGoogle Scholar
  14. Gur-Arie R, Cohen CJ, Eitan Y, Shelef L, Hallerman EM, Kashi Y (2000) Simple sequence repeats in Escherichia coli: abundance, distribution, composition, and polymorphism. Genome Res 10:62–71PubMedGoogle Scholar
  15. Hohmann U, Enso TR, Gill KS, Gill BS (1994) Comparison of genetic and physical maps of group 7 chromosomes from Triticum aestivum L. Mol Gen Genet 245:644–653PubMedGoogle Scholar
  16. Johannesson H (2000) Functional analysis of homeodomain-leucine zipper transcription factors in Arabidopsis thaliana. Dissertation, University of UppsalaGoogle Scholar
  17. Kantety RV, La Rota M, Matthews DE, Sorrells ME (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48:501–510CrossRefPubMedGoogle Scholar
  18. Kisu Y, Esaka M, Suzuki M (1995) Putative zinc binding domain of plant transcription factor AOBP is related to DNA binding domains of steroid hormone receptors and GATA1. Proc Jpn Acad 71:288–292Google Scholar
  19. Kosambi DD (1944) The estimation of map distances from recombination values. Annu Eugen 12:172–175Google Scholar
  20. Kota RS, Gill KS, Gill BS, Endo TR (1993) A cytogenetically based physical map of chromosome 1B in common wheat. Genome 36:548–554Google Scholar
  21. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedGoogle Scholar
  22. Lopez I, Anthony RG, Maciver SK, Jiang CZ, Khan S, Weeds AG, Hussey PJ (1996) Pollen specific expression of maize genes encoding actin depolymerizing factor-like proteins. Proc Natl Acad Sci USA 93:7415–7420CrossRefPubMedGoogle Scholar
  23. Marino CL, Nelson JC, Lu YH, Sorrells ME, Leroy P, Tuleen NA, Lopes CR, Hart GE (1996) Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L.em.Tell.). Genome 39:359–366Google Scholar
  24. Meijer AH, de Kam RJ, d’ Erfurth I, Shen W, Hoge JH (2000) HD-Zip proteins of families Iand II from rice: interactions and functional properties. Mol Gen Genet 263:12–21PubMedGoogle Scholar
  25. Mena M, Vicente-Carbajosa J, Schmidt R, Carbonero P (1998) An endosperm-specific Dof protein from barley, highly conserved in wheat, binds to and activates transcription from the prolamin-box of a native B-hordein promoter in barley endosperm. Plant J 16:53–62CrossRefPubMedGoogle Scholar
  26. Mickelson-Young L, Endo TR, Gill BS (1995) A cytogenetic ladder-map of the wheat homoeologous group-4 chromosomes. Theor Appl Genet 90:1007–1011Google Scholar
  27. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200CrossRefPubMedGoogle Scholar
  28. Nelson JC, Sorrells ME, van Deynze AE, Lu YH, Atkinson M, Bernard M, Leroy P, Faris JD, Anderson JA (1995a) Molecular mapping of wheat: major genes and rearrangements in homologous groups 4, 5, and 7. Genetics 141:721–731Google Scholar
  29. Nelson JC, van Deynze AE, Autrique E, Sorrells ME, Lu YH, Merlino M, Atkinson M, Leroy P (1995b) Molecular mapping of wheat, homologous group 2. Genome 38:516–524Google Scholar
  30. Nelson JC, van Deynze AE, Autrique E, Sorrells ME, Lu YH, Nègre S, Bernard M, Leroy P (1995c) Molecular mapping of wheat, Homologous group 3. Genome 38:525–533Google Scholar
  31. Papi M, Sabatini S, Bouchez D, Camilleri C, Costantino P, Vittorioso P (2000) Identification and disruption of an Arabidopsis zinc finger gene controlling seed germination. Genes Dev 14:28–33PubMedGoogle Scholar
  32. Papi M, Sabatini S, Altamura MM, Hennig L, Schäfer E, Costantino P, Vittorioso P (2002) Inactivation of the phloem-specific Dof zinc finger gene DAG1 affects response to light and integrity of the testa of Arabidopsis seeds. Plant Physiol 128:411–417CrossRefPubMedGoogle Scholar
  33. Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697CrossRefPubMedGoogle Scholar
  34. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedGoogle Scholar
  35. Shimofurutani N, Kisu Y, Suzuki M, Esaka M (1998) Functional analyses of the Dof domain, a zinc finger DNA-binding domain, in a pumpkin DNA-binding protein AOBP. FEBS Lett 430:251–256CrossRefPubMedGoogle Scholar
  36. Stack S, Campbell L, Henderson K, Eujayl I, Hanafey M, Powell W, Wolters P (2000) Development of EST-derived microsatellite markers for mapping and germplasm analysis in wheat. Plant and Animal Genome Conference, San Diego, California, 2000Google Scholar
  37. Stephenson P, Bryan G, Kirby J, Collins A, Devos K, Busso C, Gale M (1998) Fifty new microsatellite loci for the wheat genetic map. Theor Appl Genet 97:946–949CrossRefGoogle Scholar
  38. Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon association, and genetic marker potential. Genome Res 11:1441–1452PubMedGoogle Scholar
  39. Tóth G, Gáspári Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10:967–981PubMedGoogle Scholar
  40. Vicente-Carbajosa J, Moose S, Parsons RL, Schmidt R (1997) A maize zinc finger protein binds the prolamin box in zein gene promoters and interacts with basic leucine zipper transcriptional activator Opaque2. Proc Natl Acad Sci USA 94:7685–7690CrossRefPubMedGoogle Scholar
  41. Yanagisawa S (2000) Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. Plant J 21:281–288CrossRefGoogle Scholar
  42. Yanagisawa S, Sheen J (1998) Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. Plant Cell 10:75–99Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • L. F. Gao
    • 1
  • R. L. Jing
    • 1
  • N. X. Huo
    • 1
  • Y. Li
    • 1
    • 2
  • X. P. Li
    • 1
    • 3
  • R. H. Zhou
    • 1
  • X. P. Chang
    • 1
  • J. F. Tang
    • 1
  • Z. Y. Ma
    • 2
  • J. Z. Jia
    • 1
  1. 1.Key Laboratory of Crop Germplasm and Biotechnology, Ministry of Agriculture, Institute of Crop Germplasm ResourcesChinese Academy of Agricultural SciencesBeijingChina
  2. 2.Department of AgronomyHeibei Agricultural UniversityBao dingChina
  3. 3.Northwest Sci-Tech University of Agriculture and ForestryYang lingChina

Personalised recommendations