Advertisement

Theoretical and Applied Genetics

, Volume 108, Issue 6, pp 1064–1070 | Cite as

Microsatellite identification and characterization in peanut (A. hypogaea L.)

  • M. E. FergusonEmail author
  • M. D. Burow
  • S. R. Schulze
  • P. J. Bramel
  • A. H. Paterson
  • S. Kresovich
  • S. Mitchell
Original Paper

Abstract

A major constraint to the application of biotechnology to the improvement of the allotetraploid peanut, or groundnut (Arachis hypogaea L.), has been the paucity of polymorphism among germplasm lines using biochemical (seed proteins, isozymes) and DNA markers (RFLPs and RAPDs). Six sequence-tagged microsatellite (STMS) markers were previously available that revealed polymorphism in cultivated peanut. Here, we identify and characterize 110 STMS markers that reveal genetic variation in a diverse array of 24 peanut landraces. The simple-sequence repeats (SSRs) were identified with a probe of two 27,648-clone genomic libraries: one constructed using PstI and the other using Sau3AI/BamHI. The most frequent, repeat motifs identified were ATT and GA, which represented 29% and 28%, respectively, of all SSRs identified. These were followed by AT, CTT, and GT. Of the amplifiable primers, 81% of ATT and 70.8% of GA repeats were polymorphic in the cultivated peanut test array. The repeat motif AT showed the maximum number of alleles per locus (5.7). Motifs ATT, GT, and GA had a mean number of alleles per locus of 4.8, 3.8, and 3.6, respectively. The high mean number of alleles per polymorphic locus, combined with their relative frequency in the genome and amenability to probing, make ATT and GA the most useful and appropriate motifs to target to generate further SSR markers for peanut.

Keywords

Genomic Library Polymorphism Information Content Repeat Motif Germplasm Line Botanical Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful to Scott Lee, Manisha Singh, and Shiwanand Varma for technical assistance. The project was funded under a USAID linkage grant to ICRISAT.

Supplementary material

supp.pdf (27 kb)
Description of Electronic Supplementary material (PDF 21 KB)
sequences.xls (723 kb)
“All sequences” (Excel 740 KB)
peanut.mdb (3.8 mb)
“Peanut SSRs” (MS Access 4 MB)

References

  1. Akkaya M, Shoemaker R, Specht J, Bhagwat A, Cregan P (1995) Integration of simple sequence repeat DNA markers into a soybean linkage map. Crop Sci 35:1439–1445Google Scholar
  2. Anderson J, Churchill G, Autrique J, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186Google Scholar
  3. Areshchenkova T, Ganal M (2002) Comparative analysis of polymorphism and chromosomal location of tomato microsatellite markers isolated from different sources. Theor Appl Genet 104:229–235CrossRefGoogle Scholar
  4. Bell C, Ecker J (1994) Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19:137–144CrossRefPubMedGoogle Scholar
  5. Bianchi-Hall C, Keys R, Stalker H (1991) Use of protein profiles to characterize peanut cultivars. Newsl Assoc Official Seed Anal 65:25–26Google Scholar
  6. Burow MD, Simpson CE, Starr JL, Paterson AH (2001) Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.): broadening the gene pool of a monophyletic polyploid species. Genetics 159:823–837PubMedGoogle Scholar
  7. Burr B, Burr F, Thompson K, Albertsen M, Stuber C (1988) Gene mapping with recombinant inbreds in maize. Genetics 118:519–526PubMedGoogle Scholar
  8. Burstin J, Deniot G, Potier J, Weinachter C, Aubert G, Baranger A (2001) Microsatellite polymorphism in Pisum sativum. Plant Breed 102:311–317CrossRefGoogle Scholar
  9. Cobb BD, Clarkson JM (1994) A simple procedure for optimising the polymerase chain reaction (PCR) using modified Taguchi methods. Nucleic Acids Res 22:3801–3805PubMedGoogle Scholar
  10. Cregan P, Jarvik T, Bush A, Shoemaker R, Lark K, Kahler A, Van Toai T, Lohnes D, Chung J, Specht J (1999) An integrated genetic linkage map of the soybean genome. Crop Sci 39:1464–1490Google Scholar
  11. Daly MJ, Lincoln SE, Lander ES (1991) “PRIMER”, unpublished Software, Whitehead Institute / MIT Center for Genome ResearchGoogle Scholar
  12. Echt C, May-Marquardt P (1997) Survey of microsatellite DNA in pine. Genome 40:9–17PubMedGoogle Scholar
  13. Grieshammer U, Wynne JC (1990) Isozyme variability in mature seeds of U.S. peanut cultivars and collections. Peanut Sci 18:72–75Google Scholar
  14. Gruenbaum Y, Naveh-Many T, Cedar H, Razin A (1981) Sequence specificity of methylation in higher plant DNA. Nature 292:860–862PubMedGoogle Scholar
  15. Halward TM, Stalker HT, LaRue EA, Kochert G (1991) Genetic variation detectable with molecular markers among unadapted germ-plasm resources of cultivated peanut and related wild species. Genome 34:1013–1020Google Scholar
  16. Halward T, Stalker T, LaRue E, Kochert G (1992) Use of single-primer DNA amplifications in genetic studies of peanut (Arachis hypogaea L.). Plant Mol Biol 18:315–325PubMedGoogle Scholar
  17. Hopkins M, Casa A, Wang T, Mitchell S, Dean R, Kochert G, Kresovich S (1999) Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci 39:1243–1247Google Scholar
  18. Hüttel B, Winter P, Weising K, Choumane W, Weigand F, Kahl G (1999) Sequence-tagged microsatellite site markers for chickpea (Cicer arietinum L.). Genome 42:210–217PubMedGoogle Scholar
  19. Innan H, Terauchi R, Miyashita N (1997) Microsatellite polymorphism in natural populations of the wild plant Arabidopsis thaliana. Genetics 146:1441–1452PubMedGoogle Scholar
  20. Kochert G, Halward T, Branch WD, Simpson CE (1991) RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet 81:565–570Google Scholar
  21. Krakowski K, Brunfille J, Seto J, Baskin D, Seto D (1995) Rapid purification of fluorescent dye-labeled products in a 96-well format for high-throughput automated DNA sequencing. Nucleic Acids Res 23:4930–4931PubMedGoogle Scholar
  22. Lacks G, Stalker H (1993) Isozyme analyses of Arachis species and interspecific hybrids. Peanut Sci 20:76–81Google Scholar
  23. Lagercrantz U, Ellegren H, Andersson L (1993) The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Res 21:1111–1115PubMedGoogle Scholar
  24. Lanham P, Forster B, McNicol P, Moss J, Powell W (1994) Seed storage protein variation in Arachis species. Genome 37:487–496Google Scholar
  25. Love J, Knight A, McAleer M, Todd J (1990) Towards construction of a high-resolution map of the mouse genome using PCR-analyzed microsatellites. Nucleic Acids Res 18:4123–4130PubMedGoogle Scholar
  26. Marra MA, Kucaba TA, Dietrich NL, Green ED, Brownstein B, Wilson RK, McDonald KM, Hillier LW, McPherson JD, Waterson RH (1997) High throughput fingerprinting analysis of large-insert clones. Genome Res 7:1072–1084PubMedGoogle Scholar
  27. Morgante M, Olivieri A (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J 3:175–182PubMedGoogle Scholar
  28. Paik-Ro OG, Smith RL, Knauft DA (1992) Restriction fragment length polymorphism evaluation of six peanut species within the Arachis section. Theor Appl Genet 84:201–208Google Scholar
  29. Pepin L, Amigues Y, Lepingle A, Berthier J, Bensaid A, Vaiman D (1995) Sequence conservation of microsatellites between Bos taurus (cattle), Capra nircus (goat) and related species. Examples of use in parentage testing and phylogeny analysis. Heredity 74:53–61PubMedGoogle Scholar
  30. Saghai-Maroof MA, Biyashev RM, Yang GP, Zhang Q, Allard RW (1994) Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci USA 99:5466–5470Google Scholar
  31. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning. A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.Google Scholar
  32. Savoy C (1976) Peanut (Arachis hypogaea L.). Seed protein characterization and genotype sample classification using polyacrylamide gel electrophoresis. Biochem Biophys Res Commun 68:886–893PubMedGoogle Scholar
  33. Smulders M, Bredemeijer G, Rus-Kortekaas W, Arens P, Vosman B (1997) Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 97:264–272CrossRefGoogle Scholar
  34. Song Q, Fickus E, Cregan P (2002) Characterization of trinucleotide SSR motifs in wheat. Theor Appl Genet 104:286–293CrossRefGoogle Scholar
  35. Tanksley S, Miller J, Paterson A, Bernatzky R (1987) Molecular mapping of plant chromosomes. In: Gustafson J, Appels R (eds) Chromosome structure and function. Plenum Press, New York, pp 157–173Google Scholar
  36. Tombs MP (1963) Variant forms of arachin. Nature 200:1321–1322Google Scholar
  37. Udupa S, Robertson L, Weigand F, Baum M, Kahl G (1999) Allelic variation at (TAA)n microsatellite loci in a world collection of chickpea (Cicer arietinum L.). Mol Gen Genet 261:354–363Google Scholar
  38. Wang Z, Weber J, Zhong G, Tanksley S (1994) Survey of short tandem DNA repeats. Theor Appl Genet 88:1–6Google Scholar
  39. Weber J (1990) Informativeness of human (dC-dA)n × (dG-dT)n polymorphisms. Genomics 7:524–530PubMedGoogle Scholar
  40. Yu K, Park S, Poysa V (1999) Abundance and variation of microsatellite DNA sequences in beans (Phaseolus and Vigna). Genome 42:27–34Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • M. E. Ferguson
    • 1
    • 7
    Email author
  • M. D. Burow
    • 2
    • 6
  • S. R. Schulze
    • 3
  • P. J. Bramel
    • 4
  • A. H. Paterson
    • 3
  • S. Kresovich
    • 5
  • S. Mitchell
    • 5
  1. 1.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)PatancheruIndia
  2. 2.Department of Crop and Soil ScienceUniversity of GeorgiaAthensUSA
  3. 3.Departments of Crop and Soil Science, Botany and Genetics, Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensUSA
  4. 4.KISRSafatKuwait
  5. 5.Institute for Genomic DiversityCornell UniversityIthacaUSA
  6. 6.Texas Agricultural Experiment StationTexas A&M UniversityLubbockUSA
  7. 7.International Institute for Tropical Agriculture (IITA)NairobiKenya

Personalised recommendations