Theoretical and Applied Genetics

, Volume 108, Issue 6, pp 1151–1161 | Cite as

A new cacao linkage map based on codominant markers: development and integration of 201 new microsatellite markers

  • T. Pugh
  • O. Fouet
  • A. M. Risterucci
  • P. Brottier
  • M. Abouladze
  • C. Deletrez
  • B. Courtois
  • D. Clement
  • P. Larmande
  • J. A. K. N’Goran
  • C. Lanaud
Original Paper

Abstract

A linkage map of cacao based on codominant markers has been constructed by integrating 201 new simple sequence repeats (SSR) developed in this study with a number of isoenzymes, restriction fragment length polymorphisms (RFLP), microsatellite markers and resistance and defence gene analogs (Rgenes-RFLP) previously mapped in cacao. A genomic library enriched for (GA)n and (CA)n was constructed, and 201 new microsatellite loci were mapped on 135 individuals from the same mapping population used to establish the first reference maps. This progeny resulted from a cross between two heterozygous cacao clones: an Upper-Amazon Forastero (UPA 402) and a Trinitario (UF 676). The new map contains 465 markers (268 SSRs, 176 RFLPs, five isoenzymes and 16 Rgenes-RFLP) arranged in ten linkage groups corresponding to the haploid chromosome number of cacao. Its length is 782.8 cM, with an average interval distance between markers of 1.7 cM. The new microsatellite markers were distributed throughout all linkage groups of the map, but their distribution was not random. The length of the map established with only SSRs was 769.6 cM, representing 94.8% of the total map. The current level of genome coverage is approximately one microsatellite every 3 cM. This new reference map provides a set of useful markers that is transferable across different mapping populations and will allow the identification and comparison of the most important regions involved in the variation of the traits of interest and the development of marker-assisted selection strategies.

Notes

Acknowledgements

We thank the CNS (Centre National de Séquençage) for sequencing the cacao DNA fragments needed to develop microsatellites. We thank also USDA for their financial participation in these studies and D. Crouzillat (Nestlé) for providing us with 19 microsatellites and seven genomic probes.

References

  1. Aranzana M, Garcia-Mas J, Carbó J, Arús P (2002) Development and variability of microsatellite markers in peach. Plant Breed 121:87–92Google Scholar
  2. Aranzana M, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder C, Testolin R, Abbott A, King G, Iezzoni A, Arús P (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825PubMedGoogle Scholar
  3. Artiguenave F, Wincker P, Brottier P, Duprat S, Jovelin F, Scarpelli C, Verdier J, Vico V, Weissenbach J, Saurin W (2000) Genomic exploration of the hemiascomycetous yeast: 2. Data generation and processing. FEBS Lett 487:6–13CrossRefGoogle Scholar
  4. Barreneche T, Bodenes C, Lexer C, Trontin J-F, Fluch S (1998) A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, minisatellite, isozyme and 5S rDNA markers. Theor Appl Genet 97:1090–1103CrossRefGoogle Scholar
  5. Beckman JS, Soller M (1990) Toward a unified approach to the genetic mapping of eukaryotes based on sequence-tagged microsatellite sites. Biotechnology 8:930–932PubMedGoogle Scholar
  6. Bhattramakki D, Dong J, Chabra AK, Hart GE (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43:988–1002CrossRefPubMedGoogle Scholar
  7. Billote N, Lagoda PJL, Risterucci AM, Baurens FC (1999) Microsatellite-enriched libraries: applied methodology for the development of SSR markers in tropical crops. Fruits 54:277–288Google Scholar
  8. Billote N, Risterucci AM, Barcelos E, Noyer JL, Amblard P, Baurens FC (2001) Development, characterisation and across-taxa utility of oil palm (Elaeis guineensis Jacq.) microsatellite markers. Genome 44:413–425CrossRefPubMedGoogle Scholar
  9. Boivin K, Deu M, Rami JF, Trouche G, Hamon P (1999) Towards a saturated sorghum map using RFLP and AFLP markers. Theor Appl Genet 98:320–328CrossRefGoogle Scholar
  10. Castiglioni P, Ajmone-Marsan P, van Wijk R, Motto M (1999) AFLP markers in a molecular linkage map of maize: codominant scoring and linkage group distribution. Theor Appl Genet 99:425–431CrossRefGoogle Scholar
  11. Clement D, Risterucci AM, Motamayor JC, N’Goran JAK, Lanaud C (2003) Mapping quantitative trait loci for bean traits and ovule number in Theobroma cacao L. Genome 46:103–111CrossRefPubMedGoogle Scholar
  12. Cregan PB, Mudge J, Fickus EW, Marek LF, Danesh D, Denny R, Mathews BF, Jarvik T, Young ND (1999) Targeted isolation of simple sequence repeat markers through the use of bacterial artificial chromosomes. Theor Appl Genet 98:919–928Google Scholar
  13. Crouzillat D, Lerceteau E, Petiard V, Morera J, Rodríguez H, Walker D, Phillips W, Ronning C, Schnell R, Osei J, Fritz P (1996) Theobroma cacao L.: a genetic linkage map and quantitative trait loci analysis. Theor Appl Genet 93:205–214CrossRefGoogle Scholar
  14. Crouzillat D, Phillips W, Fritz J, Petiard V (2000) Quantitative trait analysis in Theobroma cacao L. Using molecular markers: inheritance of polygenic resistance to Phytophtora palmivora in two related populations. Euphytica 114:25–36Google Scholar
  15. Dettori MT, Quarta R, Verde I (2001) A peach linkage map integrating RFLPs, SSRs, RAPDs, and morphological markers. Genome 44:783–790PubMedGoogle Scholar
  16. Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arús P, Laigret F (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127-138Google Scholar
  17. Edwards KJ, Barker JHA, Daly A, Jones C, Karp A (1996) Microsatellite libraries enriched for several microsatellite sequences in plants. Biotechniques 20:758–760PubMedGoogle Scholar
  18. Flament MH, Kebe I, Clement D, Pieretti I, Risterucci AM, N’Goran JAK, Cilas C, Despréaux D, Lanaud C (2001) Genetic mapping of resistance factors to Phytophtora palmivora in cocoa. Genome 44:79–85CrossRefPubMedGoogle Scholar
  19. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-test-cross: mapping strategy and RAPD markers. Genetics 137:1121–1137PubMedGoogle Scholar
  20. Gupta PK, Balyan HS, Edwars KJ, Isaac P, Korzun V, Röder M, Gautier M-F, Joudrier P, Schlatter AR, Dubcovski J, de la Pena RC, Khairallah M, Penner G, Hayden MJ, Sharp P, Keller B, Wang RCC, Hardouin JP, Jack P, Leroy P (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422CrossRefGoogle Scholar
  21. Haussmann BIG, Hess DE, Seetharama N, Welz HG, Geiger HH (2002) Construction of a combined sorghum linkage map from two recombinant inbred populations using AFLP, SSR, RFLP, and RAPD markers, and comparison with other sorghum maps. Theor Appl Genet 105:629–637CrossRefGoogle Scholar
  22. Jones ES, Dupal MP, Dumsday JL, Hughes LJ, Forster JW (2002) An SSR-based genetic linkage map for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 105:577–584CrossRefGoogle Scholar
  23. Joobeur T, Periam N, de Vicente MC, King GJ, Arús P (2000) Development of a second-generation linkage map for almond using RAPD and SSR markers. Genome 43:649–655PubMedGoogle Scholar
  24. Kauffmann S, Legrand M, Geoffroy P, Fritig B (1987) Biological function of “pathogenesis-related” proteins: four PR proteins of tobacco have 1,3-glucanase activity. EMBO J 6:3209–3212Google Scholar
  25. Kijas JMH, Fowler JCS, Garbett CA (1994) Enrichment of microsatellites from the citrus genome using biotinylated oligonucleotide sequences bound to streptavidin-coated magnetic particles. Biotechniques 16:656–662PubMedGoogle Scholar
  26. Kijas JMH, Thomas MR, Fowler JCS, Roose ML (1997) Integrating of trinucleotides microsatellites into a linkage map of Citrus. Theor Appl Genet 94:701–706Google Scholar
  27. Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175Google Scholar
  28. Lanaud C, Risterucci AM, N’Goran JAK, Clement D, Flament MH, Laurent V, Falque M (1995) A genetic linkage map of Theobroma cacao L. Theor Appl Genet 9:987–993Google Scholar
  29. Lanaud C, Risterucci AM, Pieretti I, Falque M, Bouet A, Lagoda PJL (1999) Isolation and characterization of microsatellites in Theobroma cacao L. Mol Ecol 8:2142–2152CrossRefGoogle Scholar
  30. Lanaud C, Risterucci AM, Pieretti I, N’Goran JAK, Fargeas D (2004) Characterisation and genetic mapping of resistance and defence gene analogs in cocoa (Theobroma cacao L.). Mol Breed (in press)Google Scholar
  31. Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221PubMedGoogle Scholar
  32. Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van De Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10:217–241Google Scholar
  33. Macaulay M, Ramsay L, Powell W, Waugh R (2001) A representative, highly informative ‘genotyping set’ of barley SSRs. Theor Appl Genet 102:801–809Google Scholar
  34. Martin GB, Frary A, Wu R, Brommonschenkel SH, Chunwongse J, Earle ED, Tanksley SD (1994) A member of the tomato Pto gene family confers sensitivity to fenthion in rapid cell death. Plant Cell 6:1543–1552PubMedGoogle Scholar
  35. McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, De Clerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207PubMedGoogle Scholar
  36. Queiroz VT, Guimarães CT, Anhert D, Schuster I, Daher RT, Pereira MG, Miranda VRM, Loguercio LL, Barros EG, Moreira MA (2003) Identification of a major QTL in cocoa (Theobroma cacao L.) associated with resistance to witches’ broom disease. Plant Breed 122:268–272CrossRefGoogle Scholar
  37. Ramsay L, Macaulay M, degli Ivanissevich S, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005PubMedGoogle Scholar
  38. Risterucci AM, Grivet L, N’Goran JAK, Pieretti I, Flament MH, Lanaud C (2000) A high density linkage map of Theobroma cacao L. Theor Appl Genet 101:948–955Google Scholar
  39. Risterucci AM, Paulin D, N’Goran JAK, Lanaud C (2003) Identification of QTL related to cocoa resistances to three species of Phytophtora. Theor Appl Genet 108:168–174PubMedGoogle Scholar
  40. Temnykh S, Park WD, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR (2000) Mapping and genome organisation of microsatellites sequences in rice (Oryza sativa L.). Theor Appl Genet 100:697–712Google Scholar
  41. Van Ooijen JW, Voorrips E (2001) joinmap version 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The NetherlandsGoogle Scholar
  42. Viruel MA, Messeguer R, De Vicente MC, Garcia-Mas J, Puigdomènech P (1995) A linkage map with RFLP and isozyme markers for almond. Theor Appl Genet 91:964–971Google Scholar
  43. Weber JL (1990) Informativeness of human (dC-dA)n (dG-dT)n polymorphism. Genomics 7:524–530PubMedGoogle Scholar
  44. Whitham S, Dinesh-Kumar SP, Choll D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic virus resistance gene N: Similarity to Toll and the interleukin-1 receptor. Cell 78:1101–1115PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • T. Pugh
    • 1
    • 2
  • O. Fouet
    • 1
  • A. M. Risterucci
    • 1
  • P. Brottier
    • 3
  • M. Abouladze
    • 1
  • C. Deletrez
    • 1
  • B. Courtois
    • 1
  • D. Clement
    • 1
  • P. Larmande
    • 1
  • J. A. K. N’Goran
    • 4
  • C. Lanaud
    • 1
  1. 1.UMR 1096, CIRAD-BIOTROPMontpellier Cedex 5France
  2. 2.UCV-FAGROMaracayVenezuela
  3. 3.GENOSCOPECentre National de SéquençageEvryFrance
  4. 4.CNRACentre National de Recherches AgronomiquesAbidjanIvory Coast

Personalised recommendations