Theoretical and Applied Genetics

, Volume 108, Issue 4, pp 765–773 | Cite as

Location of independent root-knot nematode resistance genes in plum and peach

  • M. Claverie
  • N. Bosselut
  • A. C. Lecouls
  • R. Voisin
  • B. Lafargue
  • C. Poizat
  • M. Kleinhentz
  • F. Laigret
  • E. Dirlewanger
  • D. Esmenjaud
Article

Abstract

Prunus species express different ranges and levels of resistance to the root-knot nematodes (RKN) Meloidogyne spp. In Myrobalan plum (Prunus cerasifera), the dominant Ma gene confers a high-level and wide-spectrum resistance to the predominant RKN, Meloidogyne arenaria, Meloidogyne incognita, Meloidogyne javanica and the isolate Meloidogyne sp. Florida which overcomes the resistance of the Amygdalus sources. In Japanese plum (Prunus salicina), a similar wide-spectrum dominant resistance gene, termed Rjap, has been hypothesized from an intraspecific segregating cross. In peach, two crosses segregating for resistance to both M. incognita and M. arenaria were used to identify single genes that each control both RKN species in the Shalil (RMia557) and Nemared (RMiaNem) sources. Localisation of these genes was made possible using the RFLP and SSR- saturated reference Prunus map T×E, combined with a BSA approach applied to some of the genes. The Ma1 allele carried by the Myrobalan plum accession P.2175 was localised on the linkage group 7 at an approximate distance of 2 cM from the SSR marker pchgms6. In the Japanese plum accession J.222, the gene Rjap was mapped at the same position in co-segregation with the SSR markers pchgms6 and CPPCT022. The peach genes RMia557 and RMiaNem, carried by two a priori unrelated resistance sources, were co-localized in a subtelomeric position on linkage group 2. This location was different from the more centromeric position previously proposed by Lu et al. (1999) for the resistance gene Mij to M. incognita and M. javanica in Nemared, near the SSR pchgms1 and the STS EAA/MCAT10. By contrast, RMia557 and RMiaNem were flanked by STS markers obtained by Yamamoto and Hayashi (2002) for the resistance gene Mia to M. incognita in the Japanese peach source Juseitou. Concordant results for the three independent sources, Shalil, Nemared and Juseitou, suggest that these peach RKN sources share at least one major gene resistance to M. incognita located in this subtelomeric position. We showed that plum and peach genes are independent and, thus, can be pyramided into interspecific hybrid rootstocks based on the plum and peach species.

References

  1. Aranzana MJ, Garcia-Mas J, Carbo J, Arús P (2002a) Development and variability analysis of microsatellite markers in peach. Plant Breed 121:87–92Google Scholar
  2. Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arús P (2002b) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825Google Scholar
  3. Bergougnoux V, Claverie M., Bosselut N, Lecouls AC , Salesses G, Dirlewanger E, Esmenjaud D (2002) Marker-assisted selection of the Ma gene from Myrobalan plum for a complete-spectrum root-knot nematode (RKN) resistance in Prunus rootstocks. Acta Hort 592:223–228Google Scholar
  4. Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L.) Batsch]: isolation, characterization and cross-species amplification in Prunus. Theor Appl Genet 99:65–72CrossRefGoogle Scholar
  5. Cook R, Evans K (1987) Resistance and tolerance. In: Brown RH, Kerry BR (eds) Principles and practice of nematode control in crops. Academic Press, New York, pp 179–231Google Scholar
  6. Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arús P, Laigret F (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138Google Scholar
  7. Downey SL, Iezzoni AF (2000) Polymorphic DNA markers in black cherry (Prunus serotina) are identified using sequences from sweet cherry, peach and sour cherry. J Am Soc Hort Sci 125:76–80Google Scholar
  8. Esmenjaud D, Scotto La Massese C, Salesses G. Minot JC, Voisin R (1992) Method and criteria to evaluate resistance to Meloidogyne arenaria in Prunus cerasifera Ehr. Fundam Appl Nematol 15:385–389Google Scholar
  9. Esmenjaud D, Minot JC, Voisin R, Pinochet J, Salesses G (1994) Inter- and intra-specific resistance variability in Myrobalan plum, peach and peach-almond rootstocks using 22 root-knot nematode populations. J Am Soc Hort Sci 119:94–100Google Scholar
  10. Esmenjaud D, Minot JC, Voisin R (1996a) Effect of durable inoculum pressure and high temperature on root-galling, nematode numbers and survival of Myrobalan plum genotypes (Prunus cerasifera) highly resistant to Meloidogyne spp. Fundam Appl Nematol 19:85–90Google Scholar
  11. Esmenjaud D, Minot JC, Voisin R, Bonnet A, Salesses G (1996b) Inheritance of resistance to the root-knot nematode Meloidogyne arenaria in Myrobalan plum. Theor Appl Genet 92:873–879CrossRefGoogle Scholar
  12. Esmenjaud D, Minot JC, Voisin R, Pinochet J, Simard MH, Salesses G (1997) Differential response to root-knot nematodes in Prunus species and correlative genetic implications. J Nematol 29:370–380Google Scholar
  13. Fargette M, Phillips MS, Block VC, Waugh R, Trudgill DL (1996) An RFLP study of relationships between species, populations, and resistance breaking lines of tropical Meloidogyne. Fundam Appl Nematol 19:193–200Google Scholar
  14. Fernandez C, Pinochet J, Esmenjaud D, Salesses G, Felipe A (1994) Resistance among new Prunus rootstocks and selections to the root-knot nematodes in Spain and France. Hortscience 29:1064–1067Google Scholar
  15. Guiran (de) G, Netscher R (1970) Les nématodes du genre Meloidogyne, parasites des cultures tropicales. Cahiers ORSTOM, série Biologie 11:151–185Google Scholar
  16. Janati A, Bergé JB, Triantaphyllou AC, Dalmasso A (1982) Nouvelles données sur l’utilisation des isoestérases pour l’identification des Meloidogyne. Rev Nématol 5:147–154Google Scholar
  17. Jauregui B (1998) Localizacion de marcadores moleculares ligados a caracteres agronomicos en un cruzamiento interespecifico almendro × melocotonero. PhD thesis, University of Barcelona, SpainGoogle Scholar
  18. Johnson R (1983) Genetic background of durable resistance. In: Lamberti F, Waller JM, Van der Graaff NA (eds) Durable resistance in crops. Plenum, New York, pp 5–26Google Scholar
  19. Joobeur T, Viruel MA, De Vicente MC, Jauregui B, Ballester J, Dettori MT, Verde I, Troco MJ, Messeguer R, Battle I, Quarta R, Dirlewanger E, Arus P (1998) Construction of a saturated linkage map for Prunus using an almond × peach F2 progeny. Theor Appl Genet 97:1034–1041CrossRefGoogle Scholar
  20. Kester ED, Grassely C (1987) Almond rootstocks. In: Rom RC, Carlson RF (eds) Rootstocks for fruit crops. John Wiley and sons, New-York, pp 265–293Google Scholar
  21. Kochba J, Spiegel-Roy P (1975) Inheritance to the root-knot nematode (Meloidogyne javanica Chitwood) in bitter almond progenies. Euphytica 24:453–457Google Scholar
  22. Kosambi D (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175Google Scholar
  23. Lamberti F (1979) Economic importance of Meloidogyne spp. in subtropical and Mediterranean climates. In: Lamberti F, Taylor CE (eds) Root-knot nematodes (Meloidogyne spp.): systematic, biology and control. Academic Press, New York, pp 342–357Google Scholar
  24. Lander E, Green P, Abrahamson J, Barlow A, Daley M, Lincoln S, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedGoogle Scholar
  25. Layne REC (1987) Peach rootstocks. In: Rom RC, Carlson RF (eds) Rootstocks for fruit crops. John Willey and sons, New-York, pp 185–216Google Scholar
  26. Lecouls AC (2000) Spectre d’activité et marquage moléculaire du gène Ma1 contrôlant la résistance aux nématodes Meloidogyne chez le prunier myrobolan. PhD Thesis, University of Aix-Marseille II, FranceGoogle Scholar
  27. Lecouls AC, Salesses G, Minot JC, Voisin R, Bonnet A, Esmenjaud D (1997) Spectrum of the Ma genes for resistance to Meloidogyne spp. in Myrobalan plum. Theor Appl Genet 85:1325–2334CrossRefGoogle Scholar
  28. Lecouls AC, Rubio-Cabetas MJ, Minot JC, Voisin R, Bonnet A, Salesses G, Dirlewanger E, Esmenjaud D (1999) RAPD and SCAR markers linked to the Ma1 root-knot nematode resistance gene in Myrobalan plum (Prunus cerasifera Ehr.). Theor Appl Genet 99:328–336CrossRefGoogle Scholar
  29. Lu ZX, Sossey-Alaoui K, Reighard GL, Baird WV, Abbott AG (1999) Development and characterization of a co-dominant marker linked to root-knot nematode resistance, and its application to peach rootstocks breeding. Theor Appl Genet 99:115–123Google Scholar
  30. Lu ZX, Reighard GL, Nyczepir AP, Beckman TG, Ramming DW (2000) Inheritance of resistance to root-knot nematodes in Prunus rootstocks. HortScience 35:1344–1346Google Scholar
  31. Michelmore RW, Paran I, Kesseli V (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832PubMedGoogle Scholar
  32. Minz G, Cohn E (1962) Susceptibility of peach rootstocks to root-knot nematodes. Plant Dis Rep 46:531–534Google Scholar
  33. Nyczepir AP (1991) Nematode management strategies in stone fruits in the United States. J Nematol 23:334–341Google Scholar
  34. Ramming DW, Tanner O (1983) Nemared peach rootstock. HortScience 18:376Google Scholar
  35. Ramming DW, Cociu V (1991) Plum (Prunus). In: Moore JV, Ballington JR (eds) Genetic resources of temperate fruit and nut crops. Acta Hort 290:239–288Google Scholar
  36. Rehder A (1954) Manual of cultivated trees and shrubs, 2nd edn. Dioscorides Press, PortlandGoogle Scholar
  37. Roberts PA (1995) Conceptual and practical aspects of variability in root-knot nematodes related to host plant resistance. Annu Rev Phytopathol 33:199–221CrossRefGoogle Scholar
  38. Rubio-Cabetas MJ, Lecouls AC, Salesses G, Bonnet A, Minot JC, Voisin R, Esmenjaud D (1998) Evidence of a new gene for high resistance to Meloidogyne spp. in Myrobalan plum (Prunus cerasifera). Plant Breed 117:567–571Google Scholar
  39. Rubio-Cabetas MJ, Minot JC, Voisin R, Esmenjaud D, Salesses G, Bonnet A (1999) Response of the Ma genes from Myrobalan plum to Meloidogyne hapla and M. mayaguensis. HortScience 34:1266–1268Google Scholar
  40. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA 88:8014–8018Google Scholar
  41. Salesses G, Grasselly C, Renaud R, Claverie J (1993) Les porte-greffe des espèces fruitières à noyau du genre Prunus. In: Gallais A, Bannerot H (eds) Amélioration des espèces cultivées. INRA, Paris, pp 605–619Google Scholar
  42. Salesses G, Grasselly C, Bernhard R (1994) Utilisation des espèces indigènes et exotiques pour l’amélioration des Prunus cultivés, variétés et porte-greffe. C R Acad Agric France 80:77–88Google Scholar
  43. Sasser JN (1977) Worldwide dissemination and importance of the root-knot nematodes Meloidogyne spp. J Nematol 22:585–589Google Scholar
  44. Scotto La Massese C, Grasselly C, Minot JC, Voisin R (1984) Différence de comportement de 23 clones et hybrides de Prunus à l’égard de quatre espèces de Meloidogyne. Rev Nématol 7:265–270Google Scholar
  45. Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 97:1034–1041Google Scholar
  46. Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Dettori MT, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach (Prunus persica L. Batch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520CrossRefPubMedGoogle Scholar
  47. Triantaphyllou AC (1985) Cytogenetics, cytotaxonomy and phylogeny of root-knot nematodes. In: Sasser JN, Carter CC (eds) An advanced treatise on Meloidogyne, Vol I. North Carolina State University Graphics, Raleigh, pp 113–126Google Scholar
  48. Yamamoto T, Hayashi T (2002) New root-knot nematode resistance genes and their STS markers in peach. Sci Hort 96:81–90CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • M. Claverie
    • 1
  • N. Bosselut
    • 1
  • A. C. Lecouls
    • 1
  • R. Voisin
    • 1
  • B. Lafargue
    • 2
  • C. Poizat
    • 2
  • M. Kleinhentz
    • 2
  • F. Laigret
    • 2
  • E. Dirlewanger
    • 2
  • D. Esmenjaud
    • 1
  1. 1.Unité “Interactions Plantes-Microorganismes et Santé Végétale” (IPMSV), Equipe de NématologieInstitut National de la Recherche Agronomique (INRA)Antibes CedexFrance
  2. 2.Unité de Recherche sur les Espèces Fruitières et la Vigne (UREFV)INRAVillenave d’Ornon CedexFrance

Personalised recommendations