Advertisement

Theoretical and Applied Genetics

, Volume 108, Issue 2, pp 306–314 | Cite as

Generation and flanking sequence analysis of a rice T-DNA tagged population

  • Y. Sha
  • S. Li
  • Z. Pei
  • L. Luo
  • Y. Tian
  • C. HeEmail author

Abstract

Insertional mutagenesis provides a rapid way to clone a mutated gene. Transfer DNA (T-DNA) of Agrobacterium tumefaciens has been proven to be a successful tool for gene discovery in Arabidopsis and rice (Oryza sativa L. ssp. japonica). Here, we report the generation of 5,200 independent T-DNA tagged rice lines. The T-DNA insertion pattern in the rice genome was investigated, and an initial database was constructed based on T-DNA flanking sequences amplified from randomly selected T-DNA tagged rice lines using Thermal Asymmetric Interlaced PCR (TAIL-PCR). Of 361 T-DNA flanking sequences, 92 showed long T-DNA integration (T-DNA together with non-T-DNA). Another 55 sequences showed complex integration of T-DNA into the rice genome. Besides direct integration, filler sequences and microhomology (one to several nucleotides of homology) were observed between the T-DNA right border and other portions of the vector pCAMBIA1301 in transgenic rice. Preferential insertion of T-DNA into protein-coding regions of the rice genome was detected. Insertion sites mapped onto rice chromosomes were scattered in the genome. Some phenotypic mutants were observed in the T1 generation of the T-DNA tagged plants. Our mutant population will be useful for studying T-DNA integration patterns and for analyzing gene function in rice.

Keywords

Rice Genome Filler Sequence Illegitimate Recombination VirD2 Protein Nick Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are grateful to Dr. Guo-liang Wang for critical reading of the manuscript. The work was supported by The Chinese Academy of Sciences (grant No. KXCX2-1-02-01), and The Basic Research Program (The '973' Program, grant No. TG2000016203) and High-Tech Program (The '863' Program, grant No. 2001AA225012) of the Ministry of Science and Technology of China.

Supplementary material

Table 1: T-DNA flanking sequences with similarity to sequences deposited in public databases

esm.pdf (205 kb)
(PDF 738 KB)

References

  1. Azpiroz-Leehan R, Feldmann KA (1997) T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet 13:152–156PubMedGoogle Scholar
  2. Barakat A, Gallois P, Raynal M, Meatre-Ortega D, Sallaud C, Guiderdoni E, Delseny M, Bernardi G (2000) The distribution of T-DNA in the genomes of transgenic Arabdopsis and rice. FEBS Lett 471:161–164CrossRefPubMedGoogle Scholar
  3. Bouchez D, H. Höfte (1998) Functional genomics in plants. Plant Physiol 118:725–732PubMedGoogle Scholar
  4. Chen M-S, Presting G, Barbazuk WB, Goicoechea JL, Blackmon B, Fang G-C, Kim H, Frisch D, Yu Y, Sun S-H, Higingbottom S, Phimphilai J, Phimphilai D, Thurmond S, Gaudette B, Li P, Liu J-D, Hatfield J, Main D, Farrar K, Henderson C, Barnett L, Costa R, Williams B, Walser S, Atkins M, Hall C, Budiman MA, Tomkins JP, Luo M-Z, Bancroft I, Salse J, Regad F, Mohapatra T, Singh NK, Tyagi AK, Soderlund C, Dean RA,Wing RA (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14:537–545PubMedGoogle Scholar
  5. Chin HG, Choe MS, Lee SH, Park SH, Koo JC, Kim NY, Lee JJ, Oh BG, Yi GH, Kim SC, Choi HC, Cho MJ, Han CD (1999) Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J 19:615–623PubMedGoogle Scholar
  6. De Buck S, Jacobs A, Van Montagu M, Depicker A (1999) The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration. Plant J 20:295–304PubMedGoogle Scholar
  7. De Neve M, De Buck S, Jacobs A, Van Montagn M, Depicker A (1997) T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from ligation of separate T-DNAs. Plant J 11:15–29PubMedGoogle Scholar
  8. Downes M (1990) Preferential insertion of P elements into genes expressed in the germ-line of Drosophila melanogaster. Mol Gen Genet 222:457–460PubMedGoogle Scholar
  9. Enoki H, Izawa T, Kawahara M, Komatsu M, Koh S, Kyozuka J, Shimamoto K (1999) Ac as a tool for functional genomics of rice. Plant J 19:605–613CrossRefPubMedGoogle Scholar
  10. Feldmann KA (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J 1:71–82Google Scholar
  11. Gheysen G, Villarroel R, Van Montagu M (1991) Illegitimate recombination in plants: a model for T-DNA integration. Genes Dev 5:287–297PubMedGoogle Scholar
  12. Goff SA (1999) Rice as a model for cereal genomics. Curr Opin Plant Biol 2:86–89PubMedGoogle Scholar
  13. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100CrossRefGoogle Scholar
  14. Gorbunova V, Levy AA (1997) Non-homologous DNA end-joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res 25:4650–4657PubMedGoogle Scholar
  15. Greco R, Ouwerkerk PBF, Taal AJC, Favalli C, Beguiristain T, Puigdomenech P, Colombo L, Hoge JHC, Pereira A (2001) Early and multiple Ac transpositions in rice suitable for efficient insertional mutagenesis. Plant Mol Biol 46:215–227PubMedGoogle Scholar
  16. Herman L, Jacobs A, van Montagu M, Depicker A (1990) Plant chromosome/marker gene fusion assay for study of normal and truncated T-DNA integration events. Mol Gen Genet 224:248–256PubMedGoogle Scholar
  17. Hiei Y, Ohta S, Komari T, Kumshiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282Google Scholar
  18. Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218Google Scholar
  19. Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Yang K, Nam J, An K, Han MJ, Sung RJ, Choi HS, Yu JH, Choi JH, Cho SY, Cha SS, Kim SI, An G (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561–570PubMedGoogle Scholar
  20. Kang HG, Jeon JS, Lee S, An G (1998) Identification of class B and class C floral-organ identity genes from rice plants. Plant Mol Biol 38:1021–1029PubMedGoogle Scholar
  21. Kertbundit S, De Greve H, Deboeck F, Van Montagu M, Hernalsteens J (1991) In vivo random beta-glucuronidase gene fusions in Arabidopsis thaliana. Proc Natl Acad Sci USA 88:5212-5216Google Scholar
  22. Komari T, Saito Y, Nakakido F, Kumashiro T (1989) Efficient selection of somatic hybrids in Nicotiana tabacum L. using a combination of drug-resistance markers introduced by transformation. Theor Appl Genet 77:547–552Google Scholar
  23. Koncz C, Martini N, Mayerhofer R, Koncz-Kálmán Z, Körber H, Rédei GP Schell J (1989) High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci USA 86:8467–8471PubMedGoogle Scholar
  24. Kononov ME, Bassuner B, Gelvin SB (1997) Integration of T-DNA binary vector 'backbone' sequences into the tobacco genome: evidence for multiple complex patterns of integration. Plant J 11:945–957CrossRefPubMedGoogle Scholar
  25. Krysan P J, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11:2283–2290PubMedGoogle Scholar
  26. Lanka E, Wilkins BM (1995) DNA processing reactions in bacterial conjunction. Annu Rev Biochem 64:141–169CrossRefPubMedGoogle Scholar
  27. Li L, Qu R, de Kochko A, Fauquet C, Beachy RN (1993) An improved rice transformation system using the biolistic method. Plant Cell Rep 12:250–255Google Scholar
  28. Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463PubMedGoogle Scholar
  29. Mayerhofer R, Koncz-Kalman Z, Nawrath C, Bakkeren G, Crameri A, Angelis K, Redei GP, Schell J, Hohn B, Koncz C (1991) T-DNA integration: a mode of illegitimate recombination in plants. EMBO J 10:697–704PubMedGoogle Scholar
  30. Mooslehner K, Karls U, Harbers K (1990) Retroviral integration sites in transgenic Mov mice frequently map in the vicinity of transcribed DNA regions. J Virol 64:3056–3058PubMedGoogle Scholar
  31. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473-497Google Scholar
  32. Ohba T, Yoshioka Y, Machida C, Machida Y (1995) DNA rearrangement associated with the integration of T-DNA in tobacco: an example for multiple duplications of DNA around the integration target. Plant J 7:157–164CrossRefPubMedGoogle Scholar
  33. Parinov S, Sevugan M, Ye D, Yang WC, Kumaran M, Sundaresan V (1999) Analysis of flanking sequences from dissociation insertion lines: a database for reverse genetics in Arabidopsis. Plant Cell 11:2263–2270PubMedGoogle Scholar
  34. Ramachandran S, Sundaresan V (2001) Transposons as tools for functional genomics. Plant Physiol Biochem 39:243–252Google Scholar
  35. Roth DB, Wilson JH (1986) Non-homologous recombination in mammalian cells: role for short sequence homologies in the joining reaction. Mol Cell Biol 6:4295–4304PubMedGoogle Scholar
  36. Rueb S, Hensgens LAM (1998) Improved histochemical staining for β-D-glucuronidase activity in monocotyledonous plants. Rice Genet Newslett 6:168–169Google Scholar
  37. Saji S, Umehara Y, Antonio BA, Yamane H, Tanoue H, Baba T, Aoki H, Ishige N, Wu JZ, Koike K, Matsumoto T, Sasaki T (2001) A physical map with yeast artificial chromosome (YAC) clones covering 63% of the 12 rice chromosomes. Genome 44:32–37CrossRefPubMedGoogle Scholar
  38. Salomon S, Puchta H (1998) Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17:6086–6095PubMedGoogle Scholar
  39. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  40. Speulman E, Metz PJ, van Arkel G, Hekkert PL, Stiekema WJ, Pereira A (1999) A two-component enhancer-inhibitor transposon mutagenesis system for functional analysis of the Arabidopsis genome. Plant Cell 11:1853–1866PubMedGoogle Scholar
  41. Tinland B (1996) The integration of T-DNA into plant genomes. Trends Plant Sci 1:178–184CrossRefGoogle Scholar
  42. Tissier A, Marillonnet S, Klimyuk V, Patel K, Torres MA, Murphy GP, Jones JDG (1999) Multiple independent defective suppressor-mutator transposon insertions in Arabidopsis: a tool for functional genomics. Plant Cell 11:1841–1852PubMedGoogle Scholar
  43. Topping JF, Wei WB, Lindsey K (1991) Functional tagging of regulatory elements in the plant genome. Development 112:1009–1019PubMedGoogle Scholar
  44. Weigel D, Ahn JH, Blázquez MA, Borevitz J, Christensen SK, Fankhauser C, Ferrándiz C, Kardailsky I, Malancharuvil EJ, Neff MM, Nguyen JT, Sato S, Wang Z, Xia Y, Dixon RA, Harrison MJ, Lamb CJ, Yanofsky MF, Chory J (2000) Activation tagging in Arabidopsis. Plant Physiol 122:1003–1014PubMedGoogle Scholar
  45. Wenck AM, Czako M, Marton L (1997) Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediated transformation. Plant Mol Biol 34:913–922CrossRefPubMedGoogle Scholar
  46. Yadav NS, Vanderleyden J, Bennett DR, Barnes WM, Chilton MD (1982) Short direct repeats flank the T-DNA on a nopaline Ti plasmid. Proc Natl Acad Sci USA 79:6322–6326Google Scholar
  47. Yin Z, Wang G-L (2000) Evidence of multiple complex patterns of T-DNA integration into the rice genome. Theor Appl Genet 100:461–470CrossRefGoogle Scholar
  48. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–91Google Scholar
  49. Zambryski P, Depicker A, Kruger K, Goodman HM (1982) Tumor induction by Agrobacterium tumefaciens analysis of the boundaries of T-DNA. J Mol Appl Genet 1:361–370PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Laboratory of Plant Biotechnology, Institute of MicrobiologyThe Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations