Theoretical and Applied Genetics

, Volume 108, Issue 1, pp 10–24 | Cite as

Transpositional behaviour of an Ac/Ds system for reverse genetics in rice

  • R. Greco
  • P. B. F. Ouwerkerk
  • R. J. de Kam
  • C. Sallaud
  • C. Favalli
  • L. Colombo
  • E. Guiderdoni
  • A. H. Meijer
  • J. H. C. Hoge†
  • A. PereiraEmail author


A collection of transposon Ac/Ds enhancer trap lines is being developed in rice that will contribute to the development of a rice mutation machine for the functional analysis of rice genes. Molecular analyses revealed high transpositional activity in early generations, with 62% of the T0 primary transformants and more than 90% of their T1 progeny lines showing ongoing active transposition. About 10% of the lines displayed amplification of the Ds copy number. However, inactivation of Ds seemed to occur in about 70% of the T2 families and in the T3 generation. Southern blot analyses revealed a high frequency of germinal insertions inherited in the T1 progeny plants, and transmitted preferentially over the many other somatic inserts to later generations. The sequencing of Ds flanking sites in subsets of T1 plants indicated the independence of insertions in different T1 families originating from the same T0 line. Almost 80% of the insertion sites isolated showing homology to the sequenced genome, resided in genes or within a range at which neighbouring genes could be revealed by enhancer trapping. A strategy involving the propagation of a large number of T0 and T1 independent lines is being pursued to ensure the recovery of a maximum number of independent insertions in later generations. The inactive T2 and T3 lines produced will then provide a collection of stable insertions to be used in reverse genetics experiments. The preferential insertion of Ds in gene-rich regions and the use of lines containing multiple Ds transposons will enable the production of a large population of inserts in a smaller number of plants. Additional features provided by the presence of lox sites for site-specific recombination, or the use of different transposase sources and selectable markers, are discussed.


Enhancer Trap Enhancer Trap Line Empty Donor Site Enhancer Trapping Transposition Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Gert van Arkel and Wim Dirkse for assistance in the isolation of flanking sequences, Hans Sandbrink and Joost de Groot for assistance in Blast analyses and Dick Geurtjes for taking care of the plants in the greenhouse. This research was funded in the participating labs by a European Union project BIO4 CT 972132 on "Transposon mutagenesis in rice". The work has been carried out in compliance with the current laws governing genetic experimentation in The Netherlands.


  1. Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res 25:3389–3402PubMedGoogle Scholar
  2. Arumuganathan K, Earle E (1991) Nuclear DNA content of some important plant species. Plan Mol Biol Rep 9:208–218Google Scholar
  3. Baker B, Coupland G, Fedoroff N, Starlinger P, Schell J (1987) Phenotypic assay for excision of the maize controlling element Ac in tobacco. EMBO J 6:1547–1554.Google Scholar
  4. Balcells L, Coupland G (1994) The presence of enhancers adjacent to the Ac promoter increases the abundance of transposase mRNA and alters the timing of Ds excision in Arabidopsis. Plant Mol Biol 24:789–798PubMedGoogle Scholar
  5. Barry G (2001) The use of the Monsanto draft rice genome sequence in research. Plant Physiol 125:1164–1165PubMedGoogle Scholar
  6. Bohnert H, Ayoubi P, Borchert C Bressan R, Burnap R, Cushman J, Cushman M, Deyholos M, Fischer R, Galbraith D et al. (2001) A genomics approach towards salt stress tolerance. Plant Physiol Biochem 39:295–311CrossRefGoogle Scholar
  7. Brettell RI, Dennis ES (1991) Reactivation of a silent Ac following tissue culture is associated with heritable alterations in its methylation pattern. Mol Gen Genet 229:365–372PubMedGoogle Scholar
  8. Buell CR (2002) Current status of the sequence of the rice genome and prospects for finishing the first monocot genome. Plant Physiol 130:1585–1586CrossRefPubMedGoogle Scholar
  9. Chen M, Presting G, Barbazuk WB, Goicoechea JL, Blackmon B, Fang G, Kim H, Frisch D, Yu Y, Sun S, Higingbottom S, Phimphilai J, Phimphilai D, Thurmond S, Gaudette B, Li P, Liu J, Hatfield J, Main D, Farrar K, Henderson C, Barnett L, Costa R, Williams B, Walser S, Atkins M, Hall C, Budiman MA, Tomkins JP, Luo M, Bancroft I, Salse J, Regad F, Mohapatra T, Singh NK, Tyagi AK, Soderlund C, Dean RA, Wing RA (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14:537–545PubMedGoogle Scholar
  10. Chin HG, Choe MS, Lee SH, Park SH, Koo JC, Kim NY, Lee JJ, Oh BG, Yi GH, Kim SC, Choi HC, Cho MJ, Han CD (1999) Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J 19:615–623PubMedGoogle Scholar
  11. Chiu W, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330PubMedGoogle Scholar
  12. Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218PubMedGoogle Scholar
  13. Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689PubMedGoogle Scholar
  14. Cotsaftis O, Sallaud C, Breitler JC, Meynard D, Greco R, Pereira A, Guiderdoni E (2002) Transposon-mediated generation of T-DNA- and marker-free rice plants expressing a Bt endotoxin gene. Mol Breeding 10:165–180CrossRefGoogle Scholar
  15. De Block M, Botterman J, Vanderwiele M, Dockx J, Thoen C, Gossele V, Movva R, Thompson C, Van Montagu M, Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6:2513–2518Google Scholar
  16. Enoki H, Izawa T, Kawahara M, Komatsu M, Koh S, Kyozuka J, Shimamoto K (1999) Ac as a tool for the functional genomics of rice. Plant J 19:605–613CrossRefPubMedGoogle Scholar
  17. Fedoroff NV, Smith DL (1993) A versatile system for detecting transposition in Arabidopsis. Plant J 3:273–289CrossRefPubMedGoogle Scholar
  18. Feng Q, Zhang Y, Hao P, Wang S, Fu G, Huang Y LY, Zhu J, Liu Y, Hu X, Jia, P ZY, Zhao Q, Ying K, Yu S, Tang Y, Weng Q, Zhang L, Lu Y, Mu J, Lu Y, Zhang LS YZ, Fan D, Liu X, Lu T, Li C, Wu Y, Sun T, Lei H, Li T, Hu H, Guan, J WM, Zhang R, Zhou B, Chen Z, Chen L, Jin Z, Wang R, Yin H, Cai Z, Ren S, Lv, G GW, Zhu G, Tu Y, Jia J, Zhang Y, Chen J, Kang H, Chen X, Shao C, Sun Y, Hu, Q ZX, Zhang W, Wang L, Ding C, Sheng H, Gu J, Chen S, Ni L, Zhu F, Chen W, Lan L LY, Cheng Z, Gu M, Jiang J, Li J, Hong G, Xue Y, Han B (2002) Sequence and analysis of rice chromosome 4. Nature 420:316–320CrossRefPubMedGoogle Scholar
  19. Gale M, Devos K (1998) Comparative genetics in the grasses. Proc Natl Acad Sci 95:1971–1974PubMedGoogle Scholar
  20. Goff S, Ricke D, Lan T, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun Wei L, Chen L, Cooper B, Park S, Wood Todd C, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller Rose M, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100CrossRefGoogle Scholar
  21. Greco R, Ouwerkerk Pieter BF, Sallaud C, Kohli A, Colombo L, Puigdomenech P, Guiderdoni E, Christou P, Hoge JHC, Pereira A (2001a) Transposon insertional mutagenesis in rice. Plant Physiol 125:1175–1177PubMedGoogle Scholar
  22. Greco R, Ouwerkerk Pieter BF, Taal Anke JC, Favalli C, Beguiristain T, Puigdomenech P, Colombo L, Hoge JHC, Pereira A (2001b) Early and multiple Ac transpositions in rice suitable for efficient insertional mutagenesis. Plant Mol Biol 46:215–227PubMedGoogle Scholar
  23. Greenblatt IM (1984) A chromosome replication pattern deduced from pericarp phenotypes resulting from movements of the transposable element Modulator in maize. Genetics 108:471–485Google Scholar
  24. Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush GS, Sasaki T (1998) A high-density rice genetic linkage map with 2,275 markers using a single F2 population. Genetics 148:479–494PubMedGoogle Scholar
  25. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282Google Scholar
  26. Hoess R, Ziese M, Sternberg N (1982) P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc Natl Acad Sci 79:3398–3402PubMedGoogle Scholar
  27. Izawa T, Shimamoto K (1996) Becoming a model plant: the importance of rice to plant science. Trends Plant Sci 1:95–99CrossRefGoogle Scholar
  28. Izawa T, Ohnishi T, Nakano T, Ishida N, Enoki H, Hashimoto H, Itoh K, Terada R, Wu C, Miiyazaki C, Endo T, Iida S, Shimamoto K (1997) Transposon tagging in rice. Plant Mol Biol 35:219–229CrossRefPubMedGoogle Scholar
  29. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907PubMedGoogle Scholar
  30. Jeon JS, An G (2001) Gene tagging in rice: a high throughput system for functional genomics. Plant Sci 161:211–219CrossRefPubMedGoogle Scholar
  31. Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Lee S, Yang K, Nam J, An K, Han MJ, Sung RJ, Choi HS, Yu JH, Choi JH, Cho SY, Cha SS, Kim SI, An G (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561–570PubMedGoogle Scholar
  32. Jeong D, An S, Kang H, Moon S, Han J, Park S, Lee H, An K, G A (2002) T-DNA Insertional mutagenesis for activation tagging in Rice. Plant Physiol 130:1636–1644CrossRefPubMedGoogle Scholar
  33. Ki C, Je B, Piao H, Par S, Kim M, Park S, Park J, Park S, Lee E, Chon N, Won Y, Lee G, Nam M, Yun D, Lee M, Cha Y, Le K, Eun M, Han C (2002) Re-programming of the activity of the activator/dissociation transposon family during plant regeneration in rice. Mol Cells 14:231–237PubMedGoogle Scholar
  34. Kohli A, Xiong J, Greco R, Christou P, Pereira A (2001) Tagged Transcriptome Display (TTD) in indica rice using Ac transposition. Mol Gen Genom 266:1–11CrossRefGoogle Scholar
  35. Koprek T, McElroy D, Louwerse J, Williams Carrier R, Lemaux PG (1999) Negative selection systems for transgenic barley (Hordeum vulgare L.): comparison of bacterial codA- and cytochrome P450 gene-mediated selection. Plant J 19:719–726CrossRefPubMedGoogle Scholar
  36. Liu YG, Whittier RF (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674–681PubMedGoogle Scholar
  37. Machida Y, Onouchi H, Torikai S, Kudo M, Koizumi J, Machida C (1995) Use of site-specific recombination systems for isolation of mutants of Arabidopsis thaliana: the tagging/deletion strategy. In: Oono K, Takaiwa F (eds) Modification of gene expression and non-Mendelian inheritance. Proc US-Japanese Joint Meeting, Mito-Sato Press, pp 199–223Google Scholar
  38. Marsch Martinez N, Greco R, Van Arkel G, Herrera Estrella L, Pereira A (2002) Activation tagging using the En-I maize transposon system in Arabidopsis. Plant Physiol 129:1544–1556CrossRefPubMedGoogle Scholar
  39. Martienssen R, Colot V (2001) DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science 293:1070–1074CrossRefPubMedGoogle Scholar
  40. McClintock B (1959) Genetic and cytological studies of maize. Carnegie Inst Wash Year Book 58:452–456Google Scholar
  41. Mckenzie N, Wen L, Dale P (2002) Tissue-culture enhanced transposition of the maize transposable element Dissociation in Brassica oleracea var. 'Italica'. Theor Appl Genet 105: 23–33CrossRefGoogle Scholar
  42. Medberry S, Dale E, Qin M, Ow D (1995) Intra-chromosomal rearrangements generated by Cre-lox site-specific recombination. Nucleic Acids Res 23:485–490PubMedGoogle Scholar
  43. Nakagawa Y, Machida C, Machida Y, Toriyama K (2000) Frequency and pattern of transposition of the maize transposable element Ds in transgenic rice plants. Plant Cell Physiol 41:733–742.Google Scholar
  44. Nakagawa Y, Machida C, Machida Y, Toriyama K (2001) A system to induce the deletion of genomic sequences using R/RS site-specific recombination and the Ac transposon in transgenic rice plants. Theor Appl Genet 102:1136–1141CrossRefGoogle Scholar
  45. O'Keefe D, Tepperman J, Dean C, Leto K, Erbes D, Odell J (1994) Plant expression of a bacterial cytochrome P450 that catalyzes activation of a Sulfonylurea pro-herbicide. Plant Physiol 105:473–482PubMedGoogle Scholar
  46. Osborne B, Wirtz U, Baker B (1995) A system for insertional mutagenesis and chromosomal rearrangement using the Ds transposon and Cre-lox. Plant J 7:687–701PubMedGoogle Scholar
  47. Ow D (1996) Recombinase-directed chromosome engineering in plants. Curr Opin Biotechnol 7:181–186CrossRefGoogle Scholar
  48. Ow D (2002) Recombinase-directed plant transformation for the post-genomic era. Plant Mol Biol 48:183–200CrossRefPubMedGoogle Scholar
  49. Ow D, Medberry S (1995) Genome manipulation through site-specific recombination. Crit Rev Plant Sci 5:521–527Google Scholar
  50. Pereira A (2000) A transgenic perspective on plant functional genomics. Transgenic Res 9:245–260PubMedGoogle Scholar
  51. Pereira A, Aarts MGM (1998) Transposon tagging with the En-I system. In: Martinez-Zapater J, Salinas J (eds) Arabidopsis protocols. Humana Press, Totowa, New York, pp 329–338Google Scholar
  52. Peschke V, Phillips R, Gengenbach B (1987) Discovery of transposable element activity among progeny of tissue culture-derived maize plants. Science 238:804–807Google Scholar
  53. Peterson PW, Yoder JI (1995) Amplification of Ac in tomato is correlated with high Ac transposition activity. Genome 38:265–276PubMedGoogle Scholar
  54. Pietrzak M, Shillito RD, Hohn T, Potrykus I (1986) Expression in plants of two bacterial antibiotic resistance genes after protoplast transformation with a new plant expression vector. Nucleic Acids Res 14:5857–5868PubMedGoogle Scholar
  55. Reddy A, Ramakrishna W, Sekhar A, Ithal N, Babu P, Bonaldo M, Soares M, Bennetzen J (2002) Novel genes are enriched in normalized cDNA libraries from drought-stressed seedlings of rice (Oryza sativa L. ssp. indica cv Nagina 22). Genome 45:204–211PubMedGoogle Scholar
  56. Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T, Katayose Y, Wu J, Niimura Y, Cheng Z, Nagamura Y, Antonio BA, Kanamori H, Hosokawa S, Masukawa M, Arikawa K, Chiden Y, Hayashi M, Okamoto M, Ando T, Aoki H, Arita K, Hamada M, Harada C, Hijishita S, Honda M, Ichikawa Y, Idonuma A, Iijima M, Ikeda M, Ikeno, M, Ito S, Ito T, Ito Y, Ito Y, Iwabuchi A, Kamiya K, Karasawa W, Katagiri S, Kikuta A, Kobayashi N, Kono I, Machita K, Maehara T, Mizuno H, Mizubayashi T, Mukai Y, Nagasaki H, Nakashima M, Nakama Y, Nakamichi Y, Nakamura M, Namiki N, Negishi M, Ohta I, Ono N, Saji S, Sakai K, Shibata M, Shimokawa T, Shomura A, Song J, Takazaki Y, Terasawa K, Tsuji K, Waki K, Yamagata H, Yamane H, Yoshiki S, Yoshihara R, Yukawa K, Zhong H, Iwama H, Endo T, Ito H, Hahn JH, Kim HI, Eun MY, Yano M, Jiang J, Gojobori T (2002) The genome sequence and structure of rice chromosome 1. Nature 420:312–316CrossRefPubMedGoogle Scholar
  57. Scarpella E, Rueb S, Boot K, Hoge J, Meijer A (2000) A role for the rice homeobox gene Oshox1 in provascular cell fate commitment. Development 127: 3655–3669PubMedGoogle Scholar
  58. Schwartz D, Dennis E (1986) Transposase activity of the Ac controlling element in maize is regulated by its degree of methylation. Mol Gen Genet 205:476–482Google Scholar
  59. Scofield SR, Harrison K, Nurrish SJ, Jones JD (1992) Promoter fusions to the Activator transposase gene cause distinct patterns of Dissociation excision in tobacco cotyledons. Plant Cell 4:573–582PubMedGoogle Scholar
  60. Sijmons PC, Dekker BM, Schrammeijer B, Verwoerd TC, van den Elzen PJ, Hoekema A (1990) Production of correctly processed human serum albumin in transgenic plants. Biotechnology 8:217–221PubMedGoogle Scholar
  61. Springer P (2000) Gene traps: tools for plant development and genomics. Plant Cell 12:1007–1020PubMedGoogle Scholar
  62. Stuurman J, de Vroomen M, Nijkamp H, van Haaren M (1996) Single-site manipulation of tomato chromosomes in vitro and in vivo using Cre-lox site-specific recombination. Plant Mol Biol 32:901–913PubMedGoogle Scholar
  63. Sundaresan V, Springer P, Volpe T, Haward S, Jones JD, Dean C, Ma H, Martienssen R (1995) Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev 9:1797–1810PubMedGoogle Scholar
  64. Swinburne J, Balcells L, Scofield SR, Jones JD, Coupland G (1992) Elevated levels of Activator transposase mRNA are associated with high frequencies of Dissociation excision in Arabidopsis. Plant Cell 4:583–595PubMedGoogle Scholar
  65. Tissier AF, Marillonnet S, Klimyuk V, Patel K, Torres MA, Murphy G, Jones JD (1999) Multiple independent defective suppressor-mutator transposon insertions in Arabidopsis: a tool for functional genomics. Plant Cell 11:1841–1852PubMedGoogle Scholar
  66. Tsugeki R, Kochieva EZ, Fedoroff NV (1996) A transposon insertion in the Arabidopsis SSR16 gene causes an embryo-defective lethal mutation. Plant J 10:479–489CrossRefPubMedGoogle Scholar
  67. Upadhyaya NM, Zhou XR, Zhu QH, Ramm K, Wu L, Eamens A, Sivakumar R, Kato T, Yun DW, Santhoshkumar C, Narayanan KK, Peacock JW, Dennis ES (2002) An iAc/Ds gene and enhancer trapping system for insertional mutagenesis in rice. Funct Plant Biol 29:547–559Google Scholar
  68. Van Haaren M, Ow D (1993) Prospects of applying a combination of DNA transposition and site-specific recombination in plants: a strategy for gene identification and cloning. Plant Mol Biol 23:525–533PubMedGoogle Scholar
  69. Wang L, Heinlein M, Kunze R (1996) Methylation pattern of Activator transposase binding sites in maize endosperm. Plant Cell 8:747–758CrossRefPubMedGoogle Scholar
  70. Weigel D, Ahn JH, Blazquez MA, Borevitz JO, Christensen SK, Fankhauser C, Ferrandiz C, Kardailsky I, Malancharuvil EJ, Neff MM, Nguyen JT, Sato S, Wang ZY, Xia Y, Dixon RA, Harrison MJ, Lamb CJ, Yanofsky MF, Chory J (2000) Activation tagging in Arabidopsis. Plant Physiol 122:1003–1013PubMedGoogle Scholar
  71. Wilson K, Long D, Swinburne J, Coupland G (1996) A dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. Plant Cell 8:659–671PubMedGoogle Scholar
  72. Wu J, Maehara T, Shimokawa T, Yamamoto S, Harada C, Takazaki Y, Ono N, Mukai Y, Koike K, Yazaki J, Fujii F, Shomura A, Ando T, Kono I, Waki K, Yamamoto K, Yano M, Matsumoto T, Sasaki T (2002) A comprehensive rice transcript map containing 6,591 expressed sequence tag sites. Plant Cell 14:525–535PubMedGoogle Scholar
  73. Yamamoto K, Sasaki T (1997) Large-scale EST sequencing in rice. Plant Mol Biol 35:135–144PubMedGoogle Scholar
  74. Yoder JI (1990) Rapid proliferation of the maize transposable element Activator in transgenic tomato. Plant Cell 2:723–730Google Scholar
  75. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • R. Greco
    • 1
  • P. B. F. Ouwerkerk
    • 2
  • R. J. de Kam
    • 2
  • C. Sallaud
    • 3
  • C. Favalli
    • 4
  • L. Colombo
    • 4
  • E. Guiderdoni
    • 3
  • A. H. Meijer
    • 2
  • J. H. C. Hoge†
    • 2
  • A. Pereira
    • 1
    Email author
  1. 1.Plant Research InternationalWageningenThe Netherlands
  2. 2.Institute of Biology Leiden, Clusius LaboratoryLeiden UniversityLeidenThe Netherlands
  3. 3.CIRAD-BIOTROPTA 40/0MontpellierFrance
  4. 4.Department of BiologyUniversity of MilanMilanoItaly

Personalised recommendations