Advertisement

Theoretical and Applied Genetics

, Volume 108, Issue 1, pp 175–180 | Cite as

Resistance to rust (Puccinia psidii Winter) in Eucalyptus: mode of inheritance and mapping of a major gene with RAPD markers

  • D. T. Junghans
  • A. C. Alfenas
  • S. H. Brommonschenkel
  • S. Oda
  • E. J. Mello
  • D. Grattapaglia

Abstract

Rust is one of the most-damaging eucalypt diseases in Brazil and is considered a potential threat to eucalypt plantations worldwide. To determine the mode of inheritance of resistance in the Eucalyptus grandisPuccinia psidii pathosystem, ten full-sib families, generated from crosses between susceptible and resistant trees, were inoculated with a single-pustule isolate of the pathogen and rust severity was scored. The observed segregation ratios in segregating families suggested major gene control of rust resistance, although clearly incomplete penetrance, variable expressivity and minor genes are also involved in the global rust-resistance response. To identify markers linked to the resistance locus, screening of RAPD polymorphisms was conducted using bulked segregant analysis in a large full-sib family. A linkage group was built around the Ppr1 gene (P. psidii resistance gene 1) encompassing six RAPD markers, with a genetic window spanning 5 cM with the two most-closely linked flanking markers. Besides these two flanking markers, RAPD marker AT9/917 co-segregated with Ppr1 without a single recombinant in 994 meioses. This tightly linked marker should prove useful for marker-assisted introgression and will provide an initial lead for a positional cloning effort of this resistance allele. This is the first report of a disease resistance gene identified in Eucalyptus, and one of the few examples of the involvement of a major gene in a non-coevolved pathosystem.

Keywords

Resistance Gene Bacterial Artificial Chromosome Eucalyptus Rust Resistance RAPD Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Inez Tommerup (CSIRO, Australia) for reviewing the script. This work was supported by Cia. Suzano de Papel e Celulose, FAPEMIG—Fundação de Amparo à Pesquisa de Minas Gerais (Fapemig) and CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

References

  1. Alfenas AC, Valle LAC, Xavier AA, Brommonschenkel SH, Grattapaglia D, Silva CC, Bertolucci FL, Penchel R (1997) Eucalyptus rust: genetic variability of elite clones and histological characterization of the resistance reaction. In: Proc IUFRO Conf on Silviculture and Improvement of Eucalypt, Salvador, Bahia, Brazil, vol 2, pp 60–64Google Scholar
  2. Altschul SF, Gish W, Millar W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  3. Benet H, Guries RP, Boury S, Smalley EB (1995) Identification of RAPD markers linked to a black leaf spot resistance gene in Chinese elm. Theor Appl Genet 90:1068–1073Google Scholar
  4. Brondani RPV, Brondani C, Tarchini R, Grattapaglia D (1998) Development and mapping of microsatellite based markers in Eucalyptus. Theor Appl Genet 97:816–827CrossRefGoogle Scholar
  5. Brondani RPV, Brondani C, Grattapaglia D (2002) Towards a genus-wide reference linkage map for Eucatyptus based exclusively on highly informative microsatellite markers, Mol Gen Genomics 267:338–347Google Scholar
  6. Castro HA, Krugner TL, Bergamin Filho A (1985) Especialização fisiológica no sistema Eucatyptus grandis—Puccinia psidii Winter. Ciência e Prática Lavras 9:80–92Google Scholar
  7. Cervera MT, Gusmão J, Steenackers M, Peleman J, Storme V, Vanden Broeck A, Van Montagu M, Boerjan W (1996) Identification of AFLP molecular markers for resistance against Melampsora larici-populina in Populus. Theor Appl Genet 93:733–737Google Scholar
  8. Coutinho TA, Wingfield MJ, Alfenas AC, Crous PW (1998) Eucalyptus rust: a disease with the potential for serious international implications. Plant Dis 82:819–925Google Scholar
  9. Devey ME, Delfino-Mix A, Kinloch BB, Neale DB (1995) Random amplified polymorphic DNA markers tightly linked to a gene for resistance to white pine blister rust in sugar pine. Proc Natl Acad Sci USA 92:2066–2070PubMedGoogle Scholar
  10. FAO (2000) Global forest resources assessment 2000—Main report. FAO Forestry paper. ISSN 0258-6150 (available at http://www.fao.org/forestry/fo/fra/main/index.jsp)
  11. Ferreira FA, Silva ARC (1982) Comportamento de procedências de Eucalyptus grandis e de E. saligna à ferrugem (Puccinia psidii). Fitopatol Bras 7:23–27Google Scholar
  12. Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296CrossRefGoogle Scholar
  13. Grattapaglia D, Bradshaw HD Jr (1994) Nuclear DNA content of commercially important Eucalyptus species and hybrids. Can J For Res 24:1074–1078Google Scholar
  14. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucatyptus grandis and E. urophylla using a pseudo-testcross mapping strategy and RAPD markers. Genetics 137:1121–1137PubMedGoogle Scholar
  15. Harkins DM, Johnson GN, Skaggs PA, Delfino-Mix A, Dupper GE, Devey ME, Kinloch BB, Neale DB (1998) Saturation mapping of a major gene for resistance to white pine blister rust in sugar pine. Theor Appl Genet 97:1355–1360CrossRefGoogle Scholar
  16. Kinloch BB, Sniezko RA, Barnes GD, Greathouse TE (1999) A major gene for resistance to white pine blister rust in western white pine from the Western Cascade range. Phytopathology 89:861–867Google Scholar
  17. Kolmer JA (1996) Genetics of resistance to wheat leaf rust. Annu Rev Phytopathol 34:435–455CrossRefGoogle Scholar
  18. Lefrève F, Goué-Mourier MC, Faivre-Rampant P, Villar M (1998) A single gene cluster controls incompatibility and partial resistance to various Melampsora larici-populina races in hybrid poplar. Phytopathology 88:156–163Google Scholar
  19. Leppik EE (1970) Gene centers of plants as sources of diseases resistance. Ann Rev Phytopathol 8:323–344CrossRefGoogle Scholar
  20. Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436PubMedGoogle Scholar
  21. Mclntosh RA, Brown GN (1997) Anticipatory breeding for resistance to rust diseases in wheat. Annu Rev Phytopathol 35:311–326CrossRefGoogle Scholar
  22. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832PubMedGoogle Scholar
  23. Mora AL, Garcia CH (2000) Eucalypt cultivation in Brazil. Edited by the Brazilian Society of Silviculture (SBS)Google Scholar
  24. Newcombe G, Bradshaw Jr HD, Chastagner GA, Stettler RF (1996) A major gene for resistance to Melampsora medusae f. sp. deltoidae in a hybrid poplar pedigree. Phytopathology 86:87–94Google Scholar
  25. Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993Google Scholar
  26. Pinon J, Van Dam BC, Genetet I, de Kam M (1987) Two pathogenic races of Melampsora larici-populina in North Western Europe. Eur J For Pathol 17:47–53Google Scholar
  27. Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95:9750–9754PubMedGoogle Scholar
  28. Ruiz RAR, Alfenas AC, Ferreira FA, Valle FXR (1989) Influência de temperatura, do tempo de molhamento foliar, fotoperíodo e da intensidade de luz sobre a infecção de Puccinia psidii em eucalipto. Fitopatol Bras 14:55–61Google Scholar
  29. Steenackers M, Steenackers V, Delporte T (1994) A new physiological race of Melampsora populina on Belgium. Proc Int Poplar Commission and FAO, Working Group on Disease, FAO, RomeGoogle Scholar
  30. Stirling BV, Newcombe G, Bradshaw Jr HD (1999) Map-based cloning of Mmd1, a poplar leaf rust resistance gene. Plant and Animal Genome VIIth Conference (http://www.intl-pag.org/pag/7/abstracts/pag7810.html)
  31. Tabor GM, Kubisiak TL, Klopfenstein NB, Mcnabb Jr HS (2000) Bulked segregant analysis identifies molecular markers linked to Melampsora medusae resistance in Populus deltoides. Phytopathology 90:1039–1042Google Scholar
  32. Wilcox PL, Amerson HV, Kuhlman EG, Liu BH, O'Malley DM, Sederoff RR (1996) Detection of a major gene for resistance to fusiform rust disease in loblolly pine by genomic mapping. Proc Natl Acad Sci USA 93:3859–3864CrossRefPubMedGoogle Scholar
  33. Xavier AA, Alfenas AC, Matsuoka K, Graça RN (2001) Variabilidade fisiológica de isolados de Puccinia psidii em diferentes hospedeiros. Fitopatol Bras 26:443 (Suplemento)Google Scholar
  34. Zhang J, Steenackers M, Storme V, Neyrinck S, Van Montagu M, Gerats T, Boerjan W (2001) Fine mapping and identification of nucleotide binding site/leucine-rich repeat sequences at the MER-locus in Populus deltoides 'S9-2'. Phytopathology 91:1069–1073Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • D. T. Junghans
    • 1
    • 2
  • A. C. Alfenas
    • 3
  • S. H. Brommonschenkel
    • 3
  • S. Oda
    • 4
  • E. J. Mello
    • 4
  • D. Grattapaglia
    • 5
    • 6
  1. 1.Departamento de FitopatologiaUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Embrapa Mandioca e FruticulturaCruz das AlmasBrazil
  3. 3.Departamento de FitopatologiaUniversidade Federal de ViçosaViçosaBrazil
  4. 4.Cia. Suzano de Papel e Celulose - DRN SuzanoBrazil
  5. 5.Embrapa Recursos Genéticos e BiotecnologiaParque Estação BiológicaBrasiliaBrazil
  6. 6.Graduate Program in Genomic Sciences and BiotechnologyUniversidade Catolica de BrasíliaBrasíliaBrazil

Personalised recommendations