Theoretical and Applied Genetics

, Volume 107, Issue 7, pp 1201–1207

High variability and disomic segregation of microsatellites in the octoploid Fragaria virginiana Mill. (Rosaceae)

  • M. V. Ashley
  • J. A. Wilk
  • S. M. N. Styan
  • K. J. Craft
  • K. L. Jones
  • K. A. Feldheim
  • K. S. Lewers
  • T. L. Ashman

Abstract

The objectives of the present study were to develop microsatellite markers for the wild strawberry, Fragaria virginiana, to evaluate segregation patterns of microsatellite alleles in this octoploid species, and assess genetic variability at microsatellite loci in a wild population. A genomic library was screened for microsatellite repeats and several PCR primers were designed and tested. We also tested the use of heterologous primers and found that F. virginiana primers amplified products in cultivated strawberry, Fragaria × ananassa Duch. and Fragaria chiloensis. Similarly, microsatellite loci developed from cultivated strawberry also successfully amplified F. virginiana loci. We investigated four microsatellite loci in detail, three developed from F. virginiana and one from cultivated strawberry. A survey of 100 individuals from a population of F. virginiana in Pennsylvania demonstrated high heterozygosities (He or gene diversity ranged from 0.80 to 0.88 per locus) and allelic diversity (12–17 alleles per locus), but individual plants had no more than two alleles per locus. Segregation patterns in parents and progeny of two controlled crosses at these four loci were consistent with disomic Mendelian inheritance. Together these findings suggest that the genome of F. virginiana is "highly diploidized" and at least a subset of microsatellite loci can be treated as codominant, diploid markers. Significant heterozygote deficiencies were found at three of the four loci for hermaphroditic individuals but for only one locus among females in this gynodioecious species.

Keywords

Fragaria virginiana Wild strawberry Microsatellites Polyploid Octoploid Fragaria × ananassa 

References

  1. Ahmadi H, Bringhurst RS (1989) Genetics of sex expression in Fragaria species. Am J Bot 78:504–514Google Scholar
  2. Akkaya MS, Shoemaker R, Specht JE, Bhagwat AA, Cregan PB (1995) Integration of simple sequence repeat (SSR) DNA markers into a soybean-soybeam linkage map. Crop Sci 35:1439–1445Google Scholar
  3. Aldrich PR, Hamrick JL (1998) Reproductive dominance of pasture trees in a fragmented tropical forest mosaic. Science 281:103–105CrossRefPubMedGoogle Scholar
  4. Arulsekar S, Bringhurst RS, Voth V (1981) Inheritance of PGI and LAP isozymes in octoploid cultivated strawberries. J Am Soc Hort Sci 106:679–683Google Scholar
  5. Ashley MV, Dow BD (1994) The use of microsatellite analysis in population biology: background, methods and potential applications. In: Schierwater B, Wagner GP, DeSalle R (eds) Molecular ecology and evolution: approaches and applications. Birkhauser Verlag, Basel, Switzerland, pp 185–201Google Scholar
  6. Ashman T. L (1999) Determinants of sex allocation in a gynodioecious wild strawberry: implications for the evolution of dioecy and sexual dimorphism. J Evol Biol 12:648–661CrossRefGoogle Scholar
  7. Awadalla P, Ritland K (1997) Microsatellite variation and evolution in the Mimulus guttatus species complex with contrasting mating systems. Mol Biol Evol 14:1023–1034Google Scholar
  8. Bringhurst RS (1990) Cytogenetics and evolution in American Fragaria. HortScience 25:879–881Google Scholar
  9. Butcher PA, Decroocq S, Gray Y, Moran GF (2000) Development, inheritance and cross-species amplification of microsatellite markers from Acacia mangium. Theor Appl Genet V101:1282–1290CrossRefGoogle Scholar
  10. Buteler MI, Jarret RL, LaBonte DR (1999) Sequence characterization of microsatellites in diploid and polyploid Ipomoea. Theor Appl Genet 99:123–132Google Scholar
  11. Chase MR, Moller C, Kesseli R, Bawa KS (1996) Distant gene flow in tropical trees. Nature 383:398–399Google Scholar
  12. Cordeiro GM, Taylor GO, Henry RJ (2000) Characterization of microsatellite markers from sugarcane (Saccharum sp.), a highly polyploid species. Plant Sci 155:161–168PubMedGoogle Scholar
  13. Cregan PB, Jarvik T, Bush AL, Shoemaker RC, Lark KG, Kahler AL, Kaya N, VanToai TT, Lohnes DG, Chung J (1999) An integrated genetic linkage map of the soybean genome. Crop Sci 39:1464–1490Google Scholar
  14. Dayanandan S, Kamaljit SB, Kesseli R (1997) Conservation of microsatellites among tropical trees (Leguminosae) Am J Bot 84:1658–1663Google Scholar
  15. Di Gaspero G, Peterlunger E, Testolin R, Edwards KJ, Cipriani G (2000) Conservation of microsatellite loci within the genus Vitus. Theor Appl Genet 101:301–308CrossRefGoogle Scholar
  16. Diwan N, Bhagwat AA, Bauchan GB, Cregan PB (1997a) Simple sequence repeat DNA markers in alfalfa and perennial and annual Medicago species. Genome V40:887–895Google Scholar
  17. Diwan N, Bhatwat AA, Bauchan GB, Cregan PB (1997b) Simple sequence repeat DNA markers in alfalfa and perennial and annual Medicago species. Genome 40:887–895Google Scholar
  18. Dow BD, Ashley MV (1996) Microsatellite analysis of seed dispersal and parentage of saplings in bur oak, Quercus macrocarpa. Mol Ecol 5:120–132Google Scholar
  19. Dow BD, Ashley MV (1998a) Factors influencing male mating success in bur oak, Quercus macrocarpa. New For 15:161–181CrossRefGoogle Scholar
  20. Dow BD, Ashley MV (1998b) High levels of gene flow in bur oak revealed by paternity analysis using microsatellites. J Hered 89:62–70CrossRefGoogle Scholar
  21. Dow BD, Ashley MV, Howe HF (1995) Characterization of highly variable (GA/CT)n microsatellites in the bur oak, Quercus macrocarpa. Theor Appl Genet 91:137–141Google Scholar
  22. Dutech C, Amsellem L, Billotte N, Jarne P (2000) Characterization of (GA)(eta) microsatellite loci using an enrichment protocol in the neotropical tree species Vouacapoua americana. Mol Ecol V9:1433–1435CrossRefGoogle Scholar
  23. Ellis RP, McNicol JW, Baird E, Booth A, Lawrence P, Thomas B, Powell W (1997) The use of AFLPs to examine genetic relatedness in Barley. Mol Breed 3:359–369Google Scholar
  24. Fischer D, Bachmann K (1998) Microsatellite enrichment in organisms with large genomes (Allium cepa L.). Biotechniques V24:796+Google Scholar
  25. Grant V (1971) Plant speciation. Columbia University Press, New York LondonGoogle Scholar
  26. Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner S, Basset H, Foster R (1997) Microsatellites in Malus × domestica (apple): abundance, polymorphism and cultivar identification. Theor Appl Genet 94:249–254CrossRefGoogle Scholar
  27. Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics V48:361–372Google Scholar
  28. Gupta PK, Balyan IS, Sharma PC, Ramesth B (1996) Microsatellites in plants—a new class of molecular markers. Curr Sci 70:45–54Google Scholar
  29. Hancock JF (1999) Strawberries. CAB International Publishing, New YorkGoogle Scholar
  30. Huang W-G, Cipriani G, Morgante M, Testolin R (1998) Microsatellite DNA in Actinidia chinensis: isolation, characterisation, and homology in related species. Theor Appl Genet 97:1269–1278CrossRefGoogle Scholar
  31. Isabel N, Beaulieu J, Theriault P, Bousquet J (1999) Direct evidence for biased gene-diversity estimates from dominant random amplified polymorphic DNA (RAPD) fingerprints. Mol Ecol 8:477–483Google Scholar
  32. Keim P, Paige KN, Whitham TG, Lark KG (1989) Genetic analysis of an interspecific hybrid swarm of Populus: occurrence of unidirectional introgression. Genetics 123:557–565PubMedGoogle Scholar
  33. Lewis PO, Zaykin D (2001) Genetic data analysis: computer program for the analysis of allelic data. http://lewis.eeb.uconn.edu/lewishome/software.htm
  34. Lian C, Nara K, Nakaya H, Zhou Z, Wu B, Miyashita M, Hogetsu T (2001) Development of microsatellite markers in polyploid Salix reinii. Mol Ecol Notes 1:160–161CrossRefGoogle Scholar
  35. Lian C, Oishi R, Miyashita N, Nara K, Nakaya H, Wu B, Zhou Z, Hogetsu T (2003) Genetic structure and reproduction dynamics of Salix reinii during primary succession on Mount Fuji, as revealed by nuclear and chloroplast microsatellite analysis. Mol Ecol 12:609–618CrossRefPubMedGoogle Scholar
  36. Morgante M, Olivieri AM (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J 3:175–182PubMedGoogle Scholar
  37. Nourse SM, Fickus EW, Cregan PB, Hokanson SC (2002) Development of simple sequence repeat (SSR) molecular markers in strawberry. In: Hokanson SC Jamieson AR (eds) Strawberry research to 2001. ASHS Press Alexandria, Virginia, pp 48–53Google Scholar
  38. Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A (1998) Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol Biol Evol 15:1275–1287PubMedGoogle Scholar
  39. Perez R, Albornoz J, Dominguez A (1998) An evaluation of RAPD fragment reproducibility and nature. Mol Ecol 7:1347–1357PubMedGoogle Scholar
  40. Rabouam C, Comes AM, Bretagnolle V, Humbert J-F, Periquet G, Bigot Y (1999) Features of DNA fragments obtained by random amplified polymorphic DNA (RAPD) assays. Mol Ecol 8:493–503CrossRefPubMedGoogle Scholar
  41. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  42. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225Google Scholar
  43. Röder MS, Plaschke J, König SU, Börner A, Sorrells M, Tanksley SD, Ganal MW (1995) Abundance, variability and chromosomal location of microsatellites in wheat. Mol Gen Genet 246:327–333PubMedGoogle Scholar
  44. Röder MS, Korzun V, Wendehake K (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedGoogle Scholar
  45. Rongwen J, Akkaya MS, Bhatwat AA, Lavi U, Cregan PB (1995) The use of microsatellite DNA markers for soybean genotypes identification. Theor Appl Genet 90:43–48Google Scholar
  46. Staudt G (1962) Taxonomic studies in the genus Fragaria, typification of Fragaria species known at the time of Linnaeus. Can J Bot 40:870–886Google Scholar
  47. Staudt G (1989) The species of Fragaria, their taxonomic and geographical distribution. Acta Hortic 265:23–33Google Scholar
  48. Stebbins GL (1971) Chromosomal evolution in higher plants. Addison-Wesley, Reading, MassachusettsGoogle Scholar
  49. Streiff R, Ducousso A, Lexer C, Steinkellner H, Gloessl J, Kremer A (1999) Pollen dispersal inferred from paternity analysis in a mixed oak stand of Quercus robur L. and Q. petraea (Matt.) Liebl. Mol Ecol 8:831–841CrossRefGoogle Scholar
  50. Valleau WD (1923) The inheritance of flower types and fertility in the strawberry. Am J Bot 10:137–142Google Scholar
  51. Van Treuren R, Kuittinen H, Kärkkää K, Baena-Gonzalez E, Savolainen O (1997) Evolution of microsatellites in Arabis petraea and Arabislyrata, outcrossing relatives of Arabidopsis thaliana. Mol Biol Evol 14:220–229PubMedGoogle Scholar
  52. Viruel MA, Sánchez D, Arús P (2002) An SSR and RFLP linkage map for the octoploid strawberry (Fragaria × ananassa). In: (2002) Plant, animal and microbe genomes. Xth Conf, San Diego, California, http://www.intl-pag.org/pag/10/abstracts/PAGX_p660.html
  53. Wang Z, Weber JL, Zhong G, Tanksley SD (1994) Survey of plant short-tandem DNA repeats. Theor Appl Genet 88:1–6Google Scholar
  54. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370Google Scholar
  55. Whitton J, Rieseberg L, Ungerer M (1997) Microsatellite loci are not conserved across the Asteraceae. Mol Biol Evol 14:204–209PubMedGoogle Scholar
  56. Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • M. V. Ashley
    • 1
  • J. A. Wilk
    • 1
  • S. M. N. Styan
    • 2
    • 4
  • K. J. Craft
    • 1
  • K. L. Jones
    • 1
  • K. A. Feldheim
    • 1
  • K. S. Lewers
    • 2
  • T. L. Ashman
    • 3
  1. 1.Department of Biological SciencesUniversity of Illinois at ChicagoChicagoUSA
  2. 2.USDA-ARS Fruit LabBld 010A, BARC-WBeltsvilleUSA
  3. 3.Department of Biological SciencesUniversity of PittsburghPittsburghUSA
  4. 4.Pioneer Hi-Bred International Incorporated. A DuPont CompanyWaimeaUSA

Personalised recommendations