Theoretical and Applied Genetics

, Volume 107, Issue 6, pp 1028–1042 | Cite as

Comparative genetic linkage maps of Eucalyptus grandis, Eucalyptus globulus and their F1 hybrid based on a double pseudo-backcross mapping approach

  • A. A. Myburg
  • A. R. Griffin
  • R. R. Sederoff
  • R. W. Whetten
Article

Abstract.

Comparative genetic mapping in interspecific pedigrees presents a powerful approach to study genetic differentiation, genome evolution and reproductive isolation in diverging species. We used this approach for genetic analysis of an F1 hybrid of two Eucalyptus tree species, Eucalyptus grandis (W. Hill ex Maiden.) and Eucalyptus globulus (Labill.). This wide interspecific cross is characterized by hybrid inviability and hybrid abnormality. Approximately 20% of loci in the genome of the F1 hybrid are expected to be hemizygous due to a difference in genome size between E. grandis (640 Mbp) and E. globulus (530 Mbp). We investigated the extent of colinearity between the two genomes and the distribution of hemizygous loci in the F1 hybrid using high-throughput, semi-automated AFLP marker analysis. Two pseudo-backcross families (backcrosses of an F1 individual to non-parental individuals of the parental species) were each genotyped with more than 800 AFLP markers. This allowed construction of de novo comparative genetic linkage maps of the F1 hybrid and the two backcross parents. All shared AFLP marker loci in the three single-tree parental maps were found to be colinear and little evidence was found for gross chromosomal rearrangements. Our results suggest that hemizygous AFLP loci are dispersed throughout the E. grandis chromosomes of the F1 hybrid.

Keywords.

Comparative mapping AFLP Eucalyptus Transmission ratio distortion Genome synteny 

Notes

Acknowledgements.

The authors wish to thank representatives of Forestal Oriental SA, Uruguay, and Forestal y Agricola Monte Aguila S.A., Chile, for providing the plant materials used in this study. We express our gratitude to Pablo Santini and co-workers of Shell Uruguay Renewables S.A. for the maintenance of the backcross families and collection of leaf samples for DNA extraction, Steve Verryn of CSIR, South Africa, for leaf material of tree G50, and Jane Harbard of Shell Forestry Technical Services, U.K., for the controlled pollinations that produced the backcross families. We thank Derek Harkins, Arthur Johnson and David O'Malley for valuable discussions, encouragement and technical advice; and David Remington and Claus Vogl for helpful suggestions during the preparation of this manuscript. This work was supported by funding from the North Carolina State University Forest Biotechnology Industrial Associates Consortium and by the National Institutes of Health (Grant GM45344-06). A.A.M. was funded by the Fulbright Program and the National Research Foundation of South Africa.

References

  1. Bailey NTJ (1949) The estimation of linkage with differential viability, II and III. Heredity 3:220–228Google Scholar
  2. Brondani RPV, Brondani C, Tarchini R, Grattapaglia D (1998) Development, characterization and mapping of microsatellite markers in Eucalyptus grandis and Eucalyptus urophylla. Theor Appl Genet 97:816–827CrossRefGoogle Scholar
  3. Brondani RVP, Brondani C, Grattapaglia D (2002) Towards a genus-wide reference linkage map for Eucalyptus based exclusively on highly informative microsatellite markers. Mol Genet Genomics 267:338–347CrossRefPubMedGoogle Scholar
  4. Brooker MIH, Kleinig DA (1994) Field guide to Eucalypts. Inkata Press, AustraliaGoogle Scholar
  5. Bundock PC, Hayden M, Vaillancourt RE (2000) Linkage maps of Eucalyptus globulus using RAPD and microsatellite markers. Silvae Genet 49:223–232Google Scholar
  6. Byrne M, Murrell JC, Allen B, Moran GF (1995) An integrated genetic linkage map for eucalypts using RFLP, RAPD and isozyme markers. Theor Appl Genet 91:869–875Google Scholar
  7. Chakravarti A, Lasher LK, Reefer JE (1991) A maximum-likelihood method for estimating genome length using genetic linkage data. Genetics 128:175–182Google Scholar
  8. Chetelat RT, Meglic V, Cisneros P (2000) A genetic map of tomato based on BC1 Lycopersicon esculentum × Solanum lycopersicoides reveals overall synteny but suppressed recombination between these homeologous genomes. Genetics 154:857–867Google Scholar
  9. Eldridge K, Davidson J, Harwood C, Van Wyk G (1993) Eucalypt domestication and breeding. Oxford University Press, Oxford, UKGoogle Scholar
  10. Gion JM, Rech P, Grima-Pettenati J, Verhaegen D, Plomion C (2000) Mapping candidate genes in Eucalyptus with emphasis on lignification genes. Mol Breed 6:441–449Google Scholar
  11. Gore PL, Potts BM, Volker PW, Megalos J (1990) Unilateral cross-incompatibility in Eucalyptus: the case of hybridization between Eucalyptus globulus and Eucalyptus nitens. Aust J Bot 38:383–394Google Scholar
  12. Grattapaglia D, Bradshaw HD (1994) Nuclear DNA content of commercially important Eucalyptus species and hybrids. Can J For Res 24:1074–1078Google Scholar
  13. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross mapping strategy and RAPD markers. Genetics 137:1121–1137PubMedGoogle Scholar
  14. Grattapaglia D, Bertolucci FL, Sederoff RR (1995) Genetic mapping of QTLs controlling vegetative propagation in Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross strategy and RAPD markers. Theor Appl Genet 90:933–947Google Scholar
  15. Griffin AR, Burgess IP, Wolf L (1988) Patterns of natural and manipulated hybridization in the genus Eucalyptus L'Herit – a review. Aust J Bot 36:41–66Google Scholar
  16. Griffin AR, Harbard J, Centurion C, Santini P (2000) Breeding Eucalyptus grandis × globulus and other interspecific hybrids with high inviability – problem analysis and experience at Shell Forestry Projects in Uruguay and Chile. In: Dungey HS, Dieters MJ, Nikles DG (eds) Hybrid breeding and genetics of forest trees. Proc QFRI/CRC-SPF Symposium, 9–14 April 2000, Noosa, Queensland, Australia, Department of Primary Industries, Brisbane, pp 1–13Google Scholar
  17. Hulbert SH, Ilott TW, Legg EJ, Lincoln SE, Lander ES, Michelmore RW (1988) Genetic analysis of the fungus, Bremia lactucae, using restriction fragment-length polymorphisms. Genetics 120:947–958PubMedGoogle Scholar
  18. Keats BJ, Sherman SL, Morton NE, Robson EB, Buetow KH, Cartwright PE, Chakravarti A, Francke U, Green PP, Ott J (1991) Guidelines for human linkage maps: an International system for human linkage maps. Genomics 9:557–560PubMedGoogle Scholar
  19. Kreike CM, Stiekema WJ (1997) Reduced recombination and distorted segregation in a Solanum tuberosum (2x) × S. spegazzinii (2x) hybrid. Genome 40:180–187Google Scholar
  20. Ky CL, Barre P, Lorieux M, Trouslot P, Akaffou S, Louarn J, Charrier A, Hamon S, Noirot M (2000) Interspecific genetic linkage map, segregation distortion and genetic conversion in coffee (Coffea sp.). Theor Appl Genet 101:669–676Google Scholar
  21. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedGoogle Scholar
  22. Lange K, Boehnke M (1982) How many polymorphic genes will it take to span the human genome? Am J Hum Genet 34:842–845Google Scholar
  23. Lincoln SE, Lander ES (1992) Systematic detection of errors in genetic linkage data. Genomics 14:604–610PubMedGoogle Scholar
  24. Liu BH (1998) Statistical genomics: linkage, mapping and QTL analysis. CRC Press, New YorkGoogle Scholar
  25. Lorieux M, Goffinet B, Perrier X, Deleon DG, Lanaud C (1995) Maximum-likelihood models for mapping genetic markers showing segregation distortion. 1. Backcross populations. Theor Appl Genet 90:73–80Google Scholar
  26. Marques CM, Araujo JA, Ferreira JG, Whetten R, O'Malley DM, Liu BH, Sederoff R (1998) AFLP genetic maps of Eucalyptus globulus and Eucalyptus tereticornis. Theor Appl Genet 96:727–737CrossRefGoogle Scholar
  27. Marques CM, Vasquez-Kool J, Carocha VJ, Ferreira JG, O'Malley DM, Liu BH, Sederoff R (1999) Genetic dissection of vegetative propagation traits in Eucalyptus tereticornis and Eucalyptus globulus. Theor Appl Genet 99:936–946CrossRefGoogle Scholar
  28. Myburg AA, Remington DL, O'Malley DM, Sederoff RR, Whetten RW (2001) High-throughput AFLP analysis using infrared dye-labeled primers and an automated DNA sequencer. BioTechniques 30:348–357PubMedGoogle Scholar
  29. Myburg AA, Vogl C, Griffin AR, Sederoff RR, Whetten RW (2003) Genetics of postzygotic isolation in Eucalyptus. Comparative whole-genome analysis of barriers to introgression in a wide interspecific cross of E. grandis and E. globulus. Genetics (in press)Google Scholar
  30. Plomion C, O'Malley DM, Durel CE (1995) Genomic analysis in maritime pine (Pinus pinaster) – comparison of two RAPD maps using selfed and open-pollinated seeds of the same individual. Theor Appl Genet 90:1028–1034Google Scholar
  31. Remington DL, Whetten RW, Liu BH, O'Malley DM (1999) Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda. Theor Appl Genet 98:1279–1292CrossRefGoogle Scholar
  32. Rieseberg LH, Baird SJE, Gardner KA (2000) Hybridization, introgression, and linkage evolution. Plant Mol Biol 42:205–224CrossRefPubMedGoogle Scholar
  33. Steane DA, Nicolle D, McKinnon GE, Vaillancourt RE, Potts BM (2002) Higher-level relationships among the eucalypts are resolved by ITS-sequence data. Aust Syst Bot 15:49–62CrossRefGoogle Scholar
  34. Tanksley SD, Ganal MW, Prince JP, Devicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Roder MS, Wing RA, Wu W, Young ND (1992) High-density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160PubMedGoogle Scholar
  35. Thamarus KA, Groom K, Murrell J, Byrne M, Moran GF (2002) A genetic linkage map for Eucalyptus globulus with candidate loci for wood, fibre, and floral traits. Theor Appl Genet 104:379–387CrossRefGoogle Scholar
  36. Verhaegen D, Plomion C (1996) Genetic mapping in Eucalyptus urophylla and Eucalyptus grandis using RAPD markers. Genome 39:1051–1061Google Scholar
  37. Verhaegen D, Plomion C, Gion JM, Poitel M, Costa P, Kremer A (1997) Quantitative trait dissection analysis in Eucalyptus using RAPD markers. 1. Detection of QTLs in interspecific hybrid progeny, stability of QTL expression across different ages. Theor Appl Genet 95:597–608CrossRefGoogle Scholar
  38. Vision TJ, Brown DG, Shmoys DB, Durrett RT, Tanksley SD (2000) Selective mapping: a strategy for optimizing the construction of high-density linkage maps. Genetics 155:407–420PubMedGoogle Scholar
  39. Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP – a new technique for DNA-fingerprinting. Nucleic Acids Res 23:4407–4414PubMedGoogle Scholar
  40. Whitkus R (1998) Genetics of adaptive radiation in Hawaiian and Cook Islands species of Tetramolopium (Asteraceae). II. Genetic linkage map and its implications for interspecific breeding barriers. Genetics 150:1209–1216PubMedGoogle Scholar
  41. Williams CG, Goodman MM, Stuber CW (1995) Comparative recombination distances among Zea mays L. inbreds, wide crosses and interspecific hybrids. Genetics 141:1573–1581PubMedGoogle Scholar
  42. Xu Y, Zhu L, Xiao J, Huang N, McCouch SR (1997) Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled-haploid, and recombinant inbred populations in rice (Oryza sativa L). Mol Gen Genet 253:535–545CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • A. A. Myburg
    • 1
    • 3
  • A. R. Griffin
    • 2
  • R. R. Sederoff
    • 1
  • R. W. Whetten
    • 1
  1. 1.Departments of Forestry and Genetics, North Carolina State University, Raleigh, NC, 27695, USA
  2. 2.CRC for Sustainable Production Forestry and School of Plant Science, University of Tasmania, Hobart, 7001, Australia
  3. 3.Department of Genetics, University of Pretoria, Pretoria, 0002, South Africa

Personalised recommendations