Theoretical and Applied Genetics

, Volume 107, Issue 6, pp 965–971 | Cite as

Mapping of Rym14 Hb , a gene introgressed from Hordeum bulbosum and conferring resistance to BaMMV and BaYMV in barley

  • B. Ruge
  • A. Linz
  • R. Pickering
  • G. Proeseler
  • P. Greif
  • P. Wehling
Article

Abstract.

Hordeum bulbosum represents the secondary gene pool of barley and constitutes a potential source of various disease resistances in barley breeding. Interspecific crosses of H. vulgare × H. bulbosum resulted in recombinant diploid-barley progeny with immunity to BaMMV after mechanical inoculation. Tests on fields contaminated with different viruses demonstrated that resistance was effective against all European viruses of the soil-borne virus complex (BaMMV, BaYMV-1, -2). Genetic analysis revealed that resistance was dominantly inherited. Marker analysis in a F5 mapping family was performed to map the introgression in the barley genome and to estimate its size after several rounds of recombination. RFLP anchor-marker alleles indicative of an H. bulbosum introgression were found to cover an interval 2.9 cM in length on chromosome 6HS. The soil-borne virus resistance locus harboured by this introgressed segment was designated Rym14 Hb . For marker-assisted selection of Rym14 Hb carriers, a diagnostic codominant STS marker was derived from an AFLP fragment amplified from leaf cDNA of homozygous-resistant genotypes inoculated with BaMMV.

Keywords.

Soil-borne virus resistance Hordeum bulbosum Hordeum vulgare Introgression mapping Rym14Hb 

Notes

Acknowledgements.

R. Pickering thanks the Foundation for Research Science and Technology (New Zealand) for supporting part of this research under the Public Good Science Fund, and Professor Ingo Schubert (Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany) for helpful advice on FISH and allowing this work to be performed in his laboratory.

References

  1. Anamthawat-Jónsson K, Schwarzacher T, Heslop-Harrison JS (1993) Behavior of parental genomes in the hybrid Hordeum vulgare × H. bulbosum. J Hered 84:78–82Google Scholar
  2. Bauer E, Weyen J, Schiemann A, Graner A, Ordon F (1997) Molecular mapping of novel resistance genes against Barley Mild Mosaic Virus (BaMMV). Theor Appl Genet 95:1263–1269Google Scholar
  3. Bedbrook JR, Jones J, O'Dell M, Thompson RD, Flavell RB (1980) A molecular description of telomeric heterochromatin in Secale species. Cell 19:545–560Google Scholar
  4. Budowle B, Chakraborty R, Giusti AM, Eisenberg AJ, Allen RC (1991) Analysis of VNTR locus D1S80 by the PCR followed by high resolution PAGE. Am J Hum Genet 48:137–144PubMedGoogle Scholar
  5. Gale MD, Atkinson MD, Chinoy CN, Harcourt RL, Jia J, Li QY, Devos KM (1995) Genetic maps of hexaploid wheat. Proc 8th Int Wheat Genet Symp, China Agricultural Scientech Press, Beijing, China, pp 29–40Google Scholar
  6. Graner A, Bauer E (1993) RFLP mapping of the ym4 virus resistance gene in barley. Theor Appl Genet 86:689–693Google Scholar
  7. Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Hermann RG (1991) Construction of an RFLP map in barley. Theor Appl Genet 83:250–256Google Scholar
  8. Graner A, Streng S, Kellermann A, Schiemann A, Bauer E, Waugh R, Pellio B, Ordon F (1999a) Molecular mapping and genetic fine-structure of the rym5 locus encoding resistance to different strains of the barley Yellow Mosaic Virus Complex. Theor Appl Genet 98:285–290Google Scholar
  9. Graner A, Streng S, Kellermann A, Proeseler G, Schiemann A, Peterka H, Ordon F (1999b) Molecular mapping of genes conferring resistance to soil-borne viruses in barley – an approach to promote understanding of host-pathogen interactions. J Plant Dis Protect 106:405–410Google Scholar
  10. Iida Y, Ban T, Konishi T (1999) Linkage analysis of the rym6 resistance gene to Japanese strain II of barley yellow mosaic virus (BaYMV-II) in barley. Barley Genet Newslett 29:31–33Google Scholar
  11. Islam AKMR, Shepherd KW (1981) Wheat barley addition lines: their use in genetic and evolutionary studies in barley. Barley Genetics IV, pp 729–739Google Scholar
  12. Kasha KJ, Kleinhofs A, North American Barley Genome Mapping Project (1994) Mapping of the barley cross Harrington × TR306. Barley Genet Newslett 23:65–69Google Scholar
  13. Kasha KJ, Pickering RA, William HM, Hill A, Oro R, Reader S, Snape JW (1996) GISH and RFLP facilitated identification of a barley chromosome carrying powdery mildew resistance from Hordeum bulbosum. Proc 7th Int Barley Genet Symp. University Extension Press, University of Saskatchewan 1:338–340Google Scholar
  14. Konishi T, Ban T, Iida Y, Yoshimi R (1997) Genetic analysis of disease resistance to all strains of BaYMV in a Chinese barley landrace, Mokusekko 3. Theor Appl Genet 94:871–877CrossRefGoogle Scholar
  15. Künzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment-length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412PubMedGoogle Scholar
  16. Konishi T, Ordon F, Furusho M (2002) Reactions of barley accessions carrying different rym genes to BaYMV and BaMMV in Japan and Germany. Barley Genet Newslett 32:46–48Google Scholar
  17. Lander ES, Green P, Abrahamson J, Barlow A, Daley M, Lincoln S, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps for experimental and natural populations. Genomics 1:174–181PubMedGoogle Scholar
  18. McIntyre CL, Pereira S, Moran LB, Appels R (1990) New Secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. Genome 33:635–640PubMedGoogle Scholar
  19. Michel M (1996) Untersuchungen zur Übertragung von Resistenzgenen aus der Wildart Hordeum bulbosum L. in die Kulturgerste Hordeum vulgare L. PhD thesis, Lehrstuhl für Pflanzenbau und Pflanzenzüchtung, Technische Universität MünchenGoogle Scholar
  20. Ordon F, Friedt W (1993) Mode of inheritance and genetic diversity of BaMMV resistance of the exotic barley germplasms carrying genes different from ym4. Theor Appl Genet 86:229–233Google Scholar
  21. Pickering RA (1988) The production of fertile triploid hybrids between Hordeum vulgare L. (2n = 2x = 14) and H. bulbosum (2n = 4x = 28). Barley Genet Newslett 18:25–29Google Scholar
  22. Pickering RA (1992) Monosomic and double monosomic substitutions of Hordeum bulbosum L. chromosomes into H. vulgare L. Theor Appl Genet 84:466–472Google Scholar
  23. Pickering R (2000) Do the wild relatives of cultivated barley have a place in barley improvement? Proc 8th Int Barley Genet Symp, pp 223–230Google Scholar
  24. Pickering RA, Hill AM, Michel M, Timmerman-Vaughan GM (1995) The transfer of a powdery mildew resistance gene from Hordeum bulbosum L. to barley (H. vulgare L.) chromosome 2 (2l). Theor Appl Genet 91:1288–1292Google Scholar
  25. Pickering RA, Hill AM, Kynast RG (1997) Characterization by RFLP analysis and genomic in situ hybridization of a recombinant and a monosomic substitution plant derived from Hordeum vulgare L. × Hordeum bulbosum L. crosses. Genome 40:195–200Google Scholar
  26. Pickering RA, Steffenson BJ, Hill AM, Borovkova I (1998) Association of leaf rust and powdery mildew resistance in a recombinant derived from a Hordeum vulgare × Hordeum bulbosum hybrid. Plant Breed 117:83–84Google Scholar
  27. Pickering RA, Johnston PA, Timmerman-Vaughan GM, Cromey MG, Forbes EM, Steffenson BJ, Fetch TG, Effertz R, Zhang L, Murray BG, Proeseler G, Habekuß A, Kopahnke D, Schubert I (2000a) Hordeum bulbosum – a new source of disease and pest resistance genes for use in barley breeding programmes. Barley Genet Newslett 30:6–9Google Scholar
  28. Pickering RA, Malyshev S, Künzel G, Johnston PA, Menke M, Schubert I (2000b) Locating of Hordeum bulbosum chromatin within the H. vulgare genome. Theor Appl Genet 100:27–31Google Scholar
  29. Pohler W, Szigat Gi (1982) Versuche zur rekombinativen Genübertragung von der Wildgerste Hordeum bulbosum in die Kulturgerste H. vulgare. Arch Züchtungsforsch Berlin 12:87–100Google Scholar
  30. Proeseler G (1993) Triticum durum Desf. a further host of barley mild mosaic virus (BaMMV). J Phytopathol 36:262–264Google Scholar
  31. Qi X, Stam P, Lindhout P (1996) Comparison and intergration of four barley genetic maps. Genome 39:379–394Google Scholar
  32. Ruge B, Michel M, Pickering R, Proeseler G, Wehling P (2000) Gene introgressions from H. bulbosum into cultivated barley cause resistance to different pathogens. Plant and Animal Genome VIII, San Diego, P228Google Scholar
  33. Ruge B, Linz A, Proeseler G, Greif P, Wehling P (2002) Markergestützte Erschließung von Hordeum bulbosum als genetische Ressource für die Züchtung virusresistenter Gerste. Vortr Pflanzenzüchtg 54:89–93Google Scholar
  34. Rychlik W (1994) OLIGO primer analysis software, version 5.0 for Windows. NBI (National Biosciences, Inc), Plymouth, USAGoogle Scholar
  35. Saeki K, Miyazaki C, Hirota N, Saito A, Ito K, Konishi T (1999) RFLP mapping of BaYMV resistance gene rym3 in barley (Hordeum vulgare). Theor Appl Genet 99:727–732Google Scholar
  36. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  37. Szigat Gi (2001) Artbastardierung bei Gerste mit Hordeum bulbosum. Vortr Pflanzenzüchtg 51:50–57Google Scholar
  38. Szigat Gi, Szigat Ge (1991) Amphidiploid hybrids between Hordeum vulgare and H. bulbosum – basis for the development of new initial material for winter barley breeding. Vortr Pflanzenzüchtg 20:34–39Google Scholar
  39. Taketa S, Ando H, Takeda K, Harrison GE, Heslop-Harrison JS (2000) The distribution, organization and evolution of two abundant and widespread repetitive DNA sequences in the genus Hordeum. Theor Appl Genet 100:169–176CrossRefGoogle Scholar
  40. Werner K, Rönicke S, le Gouis J, Friedt W, Ordon F (2001) (Abstract) Mapping of a new BaMMV-resistance gene derived from the variety 'Taihoku A'. IXth Conf Virus Diseases of Gramineae in Europe, 21–23 May, 2001, York, UKGoogle Scholar
  41. Wilkie S (1989) Isolation of genomic DNA. In: Clark MS (ed) Plant molecular biology – a laboratory manual. Springer Verlag Berlin Heidelberg New York, pp 3–14Google Scholar
  42. Xu J, Kasha KJ (1992) Transfer of a dominant gene for powdery mildew resistance and DNA from Hordeum bulbosum into cultivated barley (H. vulgare). Theor Appl Genet 84:771–777Google Scholar
  43. Xu J, Procunier JD, Kasha KJ (1990) Species-specific in situ hybridization of Hordeum bulbosum chromosomes. Genome 33:628–634Google Scholar
  44. Zhang L, Pickering R, Murray B (1999) Direct measurement of recombination frequency in interspecific hybrids between Hordeum vulgare and H. bulbosum using genomic in situ hybridization. Heredity 83:304–309CrossRefPubMedGoogle Scholar
  45. Zeller FJ (1998) Nutzung des genetischen Potentials der Hordeum – Wildarten zur Verbesserung der Kulturgerste (Hordeum vulgare L.). J Appl Bot 72:162–167Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • B. Ruge
    • 1
  • A. Linz
    • 1
  • R. Pickering
    • 2
  • G. Proeseler
    • 3
  • P. Greif
    • 4
  • P. Wehling
    • 1
  1. 1.Federal Centre for Breeding Research on Cultivated Plants, Institute of Agricultural Crops, Rudolf-Schick-Platz 3a, D-18190 Groß Lüsewitz, Germany
  2. 2.New Zealand Institute for Crop and Food Research Limited, Private Bag 4704, Christchurch, New Zealand
  3. 3.Federal Centre for Breeding Research on Cultivated Plants, Institute of Epidemiology and Resistance Resources, Aschersleben, Germany
  4. 4.Saatzuchtgesellschaft Streng's Erben GmbH and Co. KG, Uffenheim, Germany

Personalised recommendations